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Article Info Abstract

We provide a generalisation of Pythagoras’ theorem, which enables us to calculate the
absolute value of a hypersurface of arbitrary dimensions in terms of its projections. For
a one dimensional hyperplane the theorem reduces to Pythagoras’ theorem.
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1. A Generalisation Of Pythagoras’ Theorem

It has been canonical to associate Pythagoras’ theorem with the geometry of a triangle and De Gua’s theorem and higher
dimensional analogues, with the geometry of a simplex. We, however, adopt a more general geometric interpretation.
Namely, we state a new theorem, which yields the absolute value of an hyperplane of arbitrary shape in terms of its
components,
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where 1 , ,pi i
x X p

  and d are the components of the hyperplane, the absolute value of the hyperplane, the dimension

of the hyperplane and the overall dimension of the space respectively. We retrieve Pythagoras’ theorem,

X2 = x2 + y2

for p = 1 and d = 2. For p = 2 and d = 3, we obtain a new theorem, which gives the absolute value, X, of a plane of arbitrary
shape, in terms of its components

X2 = a2 + b2 + c2,

where a, b and c are the projections of the plane, x12, x13 and x23, onto the three planes, spanned by the coordinate axis
axes. This theorem has geometric meaning, as is illustrated (Bell, 1999).

2. Inner Product and Projections

The square of the absolute value of any hyperplane with arbitrary boundary is equal to sum of the squares of the
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absolute values of the projections of the hyperplane onto its basis elements. We argue that this insight is true in the
trivial case, by realizing that we can always rotate any hyperplane, such that it has only one component.

For the sake of clarity, a hyperplane can be decomposed into its projections onto its basis elements as follows
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where e
i
 are the basis vectors and where the components are the projections 1 1 ,p pi i iix e e x    . We recognize

the theorem for hyperplanes (Bell, 1999) as an inner product of an hyper plane (Benson, 1999) with itself and derive the
theorem this way. The inner product of the basis elements is equal to the Gram matrix

1 1, det ,p p k le e f f e f     

where ,i j ije e g  and j
i ije g e . This determines the inner product of two p-forms, x, and y, in the following manner
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Figure 1: The Decomposition of a Grey Surface, into its Projections, x12, x13 and x23 in Blue, Red and Green is
Being Displayed
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where the absence of a sum sign implies Einstein summation convention. We now derive the theorem for hyper planes
(Bell, 1999),
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Note that the theorem holds in relativistic spaces.

3. Hypersurfaces

We generalize the theorem for hyperplanes to a theorem for hypersurfaces. Letting the components to be innitesimal,

1 1
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where dX is the absolute value of an innitesimal hypersurface, where xi are arbitrary coordinates and where the square
brackets imply antisymmetrization. Whenever the metric is diagonal, we obtain,
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We conclude with three examples for clarication. We retrieve the line element,

2
,

i j
i jdX g dx dx

for p = 1.

Taking the root of both sides of the theorem for hypersurfaces, we obtain the d-dimensional volume element,

[1 ]ddX g dx dx 

for p = d.

The calculation of the surface of a sphere goes as follows. Taking p = 2, d = 3 and choosing the coordinates to be
spherical coordinates, gives us,

dX2 = r2sin2(drd)2 + r2(drd)2 + r4sin2(dd)2,

where the metric is given by g
rr
 = 1; g = r2 and g = r2sin2. The surface of a sphere is characterized by the radius being

constant, dr = 0. If we then take the root and put in the appropriate integration boundaries, we get the value for the area.
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4. Historical Discussion

We believe the theorem of Pythagoras to be a most important theorem and also its generalisation. One might question
the novelty of this work though. The Namu-Goto action, for instance,

     2 2 20T
S d d X X X X

c
        

also yields the absolute value of a two dimensional hypersurface, where X = X(, ) is a vector, which determines the
shape of the hypersurface. It gives the absolute value, but it is unaware of the projections, the righthand sight of our
the theorem for hypersurfaces, a generalization of Pythagoras’ theorem. This is true, because the vector X is paramatrized
by  and , and moves only on the surface.

There is actually an older physics equation, the electromagnetic energy, which only captures the righthand sight of
the theorem for hypersurfaces. We can recognize F as the projection of an innitesimal surface on the x, x-plane. The
absolute value of F is then given by F2 = FF.
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