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Abstract
Federated learning (FL) has emerged as a viable paradigm for decentralized
machine learning (DML) across multiple platforms while safeguarding data
privacy. This study covers a thorough analysis of FL strategies intended to
protect the privacy of data. It investigates the techniques and tactics FL uses to
secure data privacy and explores the benefits and constraints of FL privacy
protection. Using a methodical approach to the literature review, the study
distinguishes FL approaches, explores the nuances of the FL transfer process,
assesses current techniques, and identifies inherent vulnerabilities and
shortcomings. These outcomes emphasize the vitality FL has for alleviating
concerns about privacy while fostering collaborative learning. A variety of FL
techniques are identified in the review, each of which contributes a distinct
mechanism for maintaining privacy. These include differential privacy,
homomorphic encryption, pruning, secure aggregation, secure multiparty
computation, and zero-knowledge proofs, among others. This study provides
scholars and practitioners with significant perspectives on existing procedures
and prospective areas for advancement by integrating ideas from multiple
sources to provide an overview of the current FL landscape concerning data
privacy protection. The findings are more credible and reliable because of the
systematic study, which also provides a strong basis for further research on FL
and data privacy protection. At the end of the study, the implications of FL
approaches for improving data privacy are covered. The significance of
continuing research endeavors to tackle new problems and refine FL techniques
for resilient and expandable privacy protection in the distributed machine
learning age is underlined.
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1. Introduction

Considering user’s privacy protection, collaborative machine learning (Zhang et al., 2020) models are paving
the way of a new generational advancement by approaching the likes of decentralized learning and federated
learning (Pasquini et al., 2022). To solve the problems associated with large-scale system control, including
high dimensions, constraints on the information structure, uncertainties, and data protection, decentralized
control systems are proposed (Bakule, 2008). DML describes the practice of distributing machine learning
tasks and models over a network of devices, as opposed to storing and processing data on a single server or
data center. By dispersing data among several network nodes, DML eliminates the need for centralized data
storage (Pasquini et al., 2022). Providing a more safe, effective, and scalable method for developing and
implementing machine learning models is the aim of DML, where sensitive data is safeguarded together with
the processing load. For privacy solutions, DML has been applied in Healthcare (Gillis, 2022; Rieke et al.,
2020; Truhn et al., 2024; Zhou et al., 2024), Finance (Gillis, 2022; Palaiokrassas et al., 2023; Rizinski et al., 2022;
Yang et al., 2020a; Zhang and Zhu, 2020), IoT (Gillis, 2022; Khan et al., 2023; Yang et al., 2020a), Advanced
Computing Technology (Lim, 2019; Liu et al., 2020; Wang et al., 2020; Zhao, 2020), and many other important
sectors. Furthermore, by utilizing the variety of data sources and viewpoints present in a decentralized
network, DML can raise the overall accuracy of models (Vergne, 2020). DML uses a variety of techniques, such
as peer-to-peer learning (Bellet, 2017), federated learning (Konecny, 2016), and Blockchain-based techniques
(Konecny, 2016; Li et al., 2020). More secure, scalable, and democratic access to machine learning models
could be made possible by DML, which has the potential to completely change how these models are created
and implemented (Wahab et al., 2021). Compared to conventional centralized machine learning (e.g., Jony
and Arnob (2024), Lisun-Ul-Islam et al. (2023), Tanvir et al. (2023)), DML offers several benefits, including
improved privacy, efficiency, robustness, and democratization (Vergne, 2020). Data is stored locally on users’
devices, which leads to shorter training times and fewer resource requirements. Furthermore, it might be more
resistant to mistakes and assaults (Elgabli et al., 2020).

FL is a cutting-edge paradigm in machine learning that will radically transform conventional model
training techniques by dispersing the learning process among multiple edge devices and protecting the data
inside of them (Asad et al., 2020). As opposed to traditional centralized methods, FL decentralizes the training
process, guaranteeing that private information stays localized on individual devices instead of being combined
into a single repository (Li et al., 2020). In addition to maintaining user data confidentiality and privacy, this
decentralized design also allays worries about computing overhead and data transport costs (Li et al., 2020).
FL reduces the requirement for bulk data transfer to a central server, maximizing resource usage and promoting
more effective learning procedures by enabling algorithms to be trained locally on the devices where the data
is stored. Consequently, FL emerges as a groundbreaking methodology with the potential to revolutionize
various domains, ranging from healthcare and finance to IoT and autonomous systems, by harmonizing the
imperatives of data privacy with the exigencies of advanced machine learning techniques. The purpose of
this study is to thoroughly examine and assess FL’s methods for protecting and preserving data privacy. To
achieve the goals, this study is opted to appropriately answer the following questions:

• What methods and strategies are currently in use in federated learning to safeguard data privacy?

• What are the benefits and limitations of the privacy protection it offers?

2. Methodology

This study does a thorough and methodical literature evaluation using a combination of conceptual and contextual
methodologies (Davaei and Gunkel, 2023). A systematic review is a process of synthesizing information on a
topic based on existing literature, for example, the paper by Jony and Serradell-López (2019). The goal of this
study is to examine and gather an array of literature on existing methods and frameworks for FL to determine
their suitability for preserving data privacy. This will pave the way for future research endeavors that seek to
develop a useful FL framework for data security. The chosen method, as outlined by (Davaei and Gunkel, 2023)
is used in a systematic review article (Jony et al., 2024), stands out for its effectiveness, consistency, and openness
when it comes to research, evaluating the quality of the literature, and compiling findings (Kraus et al., 2022). The
concept-context hybrid review is employed, which is useful as it offers comprehensive elucidations of a particular
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concept (e.g., federated learning) inside a designated context (e.g., data security) (Davaei and Gunkel, 2023).
Planning, conducting, and reporting are the three primary procedures that are covered in this study (Kraus et al.,
2022). The study’s Section 3 addresses the reporting part of this method. The adoption of qualitative content
analysis in the planning and conduct of the review is pertinent due to how it facilitates a heterogeneous corpus
of articles to be subjectively categorized into concepts (Kraus et al., 2022). Qualitative analysis is crucial for
establishing connections between the pertinent findings, subjects, and concepts of the study to boost
comprehension and the range of the literature on FL in data security and preservation. Analyzing and
understanding the important elements that have been found concerning data security and privacy protection is
made simpler using this technique. PRISMA SLR strategies and guidelines were utilized to specify record
identification, screening, and inclusion in some of the most recent systematic literature review (SLR) studies
related to FL (Prayitno et al., 2021; Sohan and Basalamah, 2023). The PRISMA SLR standards (Page et al., 2021)
are thus being adhered to in the data selection process for this study to conduct the review.

2.1. Planning the Review

Using the resources from Google Scholar, MDPI, ResearchGate, IEEE Xplore, SpringerLink, ArXiv, and PubMed,
the literature search was carried out between January 1, 2020, and January 31, 2024. A total of 103 manuscripts
were examined. The general search keywords are presented in Table 1:

Table 1: List of Keywords with Number of Papers

Keywords Number of Papers 

“federated learning” 31 

“benefits and drawbacks of federated learning” 7 

“decentralized machine learning” 23 

“federated learning frameworks” 11 

“federated learning and data privacy” 14 

“differential privacy” 8 

“data privacy in machine learning” 9 

Total Papers Identified Initially (n = 103) 

This study is limited to the domains of data privacy, preservation, and security within the broad context of
federated learning. We followed the procedure of selecting the best aligned literature for this investigation
through inductive reasoning to perform this systematic review. The criteria for selecting the data to be included
in the review’s conduct are outlined in the latter subsection.

2.2. Conducting the Review

The focus of our studies is to analyze how FL can protect data privacy with its current methods, and for this,
we chose an extensive number of papers relevant to our research topic. The literature found through keyword
searches may or may not be related to the topic under investigation. Thus, exclusion criteria have been used
for additional screening; the publication is removed if there is no relationship between the study’s conclusions
and our research topics. Initially, focused keyword searches for terms such as “Federated Learning & Data
Privacy”, “Decentralized Machine Learning & Data Privacy”, “Federated Learning & Differential Privacy”,
“Data Privacy & Machine Learning”, and “Federated Learning & Frameworks” yielded 103 sources in total—
journal articles, books, websites, and blog posts. To facilitate the process of verifying the dependability and
quality of the evaluated material, only journals with a Scopus index and robust editorial articles, books,
websites, and blog posts were taken into account. Iterative refining was used in the selection procedure to
filter out duplicate research and extract 84 studies. By concentrating on the titles and abstracts of the literature,
27 pieces of it were eliminated, and 57 works were selected for the collection. After focusing the scope further
on research that was directly related to “FL”, “Decentralized ML”, and “Data Privacy” 46 papers made up the
list. Twenty-four papers were chosen after a thematic focus was applied, keeping only those that dealt with
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“FL Methods”, or “Data Privacy in FL.” The 24 papers were chosen based on strict standards for quality,
relevance, and significant addition to the theme of federated learning techniques in data privacy protection.
The complete procedure for collecting data for analysis is shown in a PRISMA flow selection process diagram
in Figure 1. Section 3 of this study provides a detailed review and advancement of federated learning methods
for protecting data privacy.

Figure 1: Article Selection Process According to PRISMA Flow Diagram

2.3. Justification of the Selected Literature

This research conducts an in-depth literature review of multiple studies on data privacy in federated learning,
looking at different classification systems and approaches used in the FL framework for handling concerns
regarding the privacy of data (Gosselin et al., 2022). Diverse techniques are included in FL, such as differential
privacy, homomorphic encryption, pruning, secure multiparty computation (SMC), zero-knowledge proof
(ZKP), secure aggregation protocols, encrypted aggregation, secure hardware implementations, concealing
iterations, a verification framework, gradient noise addition and compression, enlargement of batches, high-
resolution data, defense against a malicious server, and FL privacy through blockchain technology. However,
our attention is limited to six primary strategies: differential privacy, homomorphic encryption, pruning,
SMC, ZKP, and secure aggregation protocols (Gosselin et al., 2022). We investigate the drawbacks, cross-
domain applicability, core objectives, and particular strategies used by each approach to protect data privacy
guidelines. Interestingly, studies point out that differential privacy is the most widely used strategy, despite
its weakness in providing privacy (Rao et al., 2021). Although there are continuous efforts to improve these
methods, FL enables calculations to be carried out while maintaining data privacy, which unquestionably
provides significant benefits to data privacy (Rao et al., 2021). Our explanation emphasizes the comprehensive
analysis and proven effectiveness of the six ways described, even though we do not fully cover other FL
approaches since some of the approaches accommodate significant computations while maintaining data
privacy. The six strategies outlined here are still some of the most popular ways to protect data privacy in the
FL environment; however, other techniques like federated averaging and secure protocol design might be
useful based on specific data and computation needs. The works selected for data privacy protection based on
various FL approaches are shown in Table 2.
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3. Federated Learning: Approaches for Data Privacy

3.1. Classification of Federated Learning

FL offers a wide range of classification methods that characterize its applications and approach. One of the
classification approaches is to distinguish between vertical, horizontal, hybrid, and federated transfer learning
based on how data is distributed among devices or servers. While horizontal federated learning entails many
entities with similar data types working together to build models without jeopardizing individual privacy,
vertical federated learning permits diverse entities to interact without revealing sensitive information.
Transferring information across associated operations or contexts while maintaining data privacy is made
possible through federated transfer learning, which extends classic transfer learning paradigms to federated
settings. These classification systems preserve data privacy while enabling researchers and practitioners to
gain insights into the optimization and implementation of federated learning for practical applications in
protecting data privacy. The latter subsection gives a proper review of FL classifications in data privacy
preservation mentioned in the selected literature and extends the perspective of dealing with data privacy in
various ways.

Horizontal Federated Learning (HFL): HFL is a federated learning method where multiple parties with the
same local dataset but different samples train a model, especially useful when data is distributed across
different locations or devices but all data points have the same features (Mori et al., 2022). When data sets are
similar or share properties among nodes, it is often more appropriate (Nguyen and Thai, 2022; Yang et al.,
2020b). The privacy issues related to centralized databases are removed by using this technique, which
retains data on the original device (Zhu, 2021). While HFL’s clients are presumed to be trustworthy, the HFL
system makes the assumption that attacks typically originate from uninvited and untrusted cloud servers
(Asad et al., 2020).

Vertical Federated Learning (VFL): In VFL, multiple entities with divergent information about an identical
user base collaborate to train machine learning models without revealing their unprocessed data or
model parameters. Vertical partitioning of the datasets in VFL results in distinct feature sets being held
by several parties for the same collection of entities (Liu et al., 2022; Zhu, 2021). This is typical in situations
where several organizations gather different kinds of information about a similar population (Asad et al.,
2020). Even though this method is more complex, there are situations in which it can be useful since it
permits multiple parties to collaborate on data modeling without compromising individual privacy (Li
et al., 2023).

Federated Transfer Learning (FTL): In the context of federated learning, transfer learning is transferring and
exploiting the knowledge from one domain (the source domain) to another (the target domain) (Razavi-Far
et al., 2022). Transferring knowledge from the source domain to the target domain can greatly enhance the
learning process, especially in situations where the destination domain has insufficient data (Zhu, 2021). The
issue of domain shift, which can arise when training models on data from several sources, has been addressed

Table 2: List of Federated Learning Approaches

FL Approaches List of Papers 

1. Differential Privacy 
(Nguyen and Thai, 2022; Stojkovic, 2022; Wang, 2023; Zhang et al., 

2020; Zhou et al., 2024) 

2. Homomorphic Encryption (Iee, 2021; Choi, 2023; G ü nther, 2023; Kishiyama, 2023) 

3. Pruning (Chu et al., 2023; Lin, 2022; Long, 2023; Yu et al., 2021) 

4. Secure Multi-party Computation 
(Byrd, 2020; Hassani, 2022; Maltitz and Carle, 2018; Yu and Cui, 

2022) 

5. Zero Knowledge Proofs (Ahmadi and Nourmohammadi, 2023; Gvili et al., 2021; Liu et al., 
2021; Wang et al., 2023b; Xing et al., 2023) 

6. Secure Aggregation (Bonawitz et al., 2016; Feng et al., 2023; So et al., 2021) 
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by proposing this approach. With the protection of data privacy, this technique enables models to leverage
insights from one dataset to train more effectively on another (Asad et al., 2020).

Hybrid Federated Learning: Hybrid FL is a recently proposed distributed machine learning paradigm for
handling private and decentralized data sets. Partial overlaps between feature space and sample space are
addressed in this configuration (Zhang, 2020). To address full and partial featured data, it first establishes a
new model-matching-based problem formulation for the process. It next provides an effective method that can
jointly train the global and local models (Elbir, 2021). The ability to handle situations where the feature space
and the sample space partially overlap across many clients makes this parameter crucial in real-world
applications. This is typical in situations where many institutions gather disparate kinds of information
about the same people (Zhang, 2020).

3.2. Federated Learning Transfer Process

Data Sampling: In federated learning, only a portion of the dataset is sampled and shared for cooperative
training, involving data sharing and model training. Restricting the release of particular data points lowers
the possibility of re-identification or reverse engineering, thereby lowering the danger of disclosing sensitive
information (Zhu, 2021). Data sampling allows entities to contribute without giving up complete control over
their datasets, addressing concerns about data security and privacy. In situations where it would be
impracticable or resource-intensive to send the complete dataset, this method maximizes computing efficiency
and resource use. In general, data sampling is a useful and successful federated learning strategy that strikes
a balance between maintaining data privacy and facilitating collaborative model training (Yu et al., 2021).

Data Perturbation: This method includes adding noise or making changes to the data before distributing it to
other people (Zhu, 2021). Sensitive information privacy is protected because data perturbation masks the
exact values of individual data points (Ding et al., 2023). This method makes sure that the original data points
cannot be reliably identified, even in the event that the data is intercepted or viewed by unauthorized parties.
The fundamental patterns and trends in the data are unaffected by the introduction of noise, enabling the
model to be trained successfully (Zhang, 2023).

Data Encryption: Cryptographic algorithms are used to encrypt data before sharing it with outside parties. A
ciphertext format, which can only be unlocked with the right decryption key, is created when the original data
is encrypted (Zhang, 2023). Inaccessibility to unauthorized individuals or entities (such as cyber attackers
can invade information security (Jony and Hamim, 2023)) guarantees the privacy and security of the
information. Federated learning frameworks minimize the possibility of breach of information or unwelcome
intrusion by assuring end-to-end secrecy through data encryption (Zhu, 2021).

Data Masking: This method hides or substitutes dummy values for sensitive data points before disclosing
them to other parties. Individual confidentiality is maintained by concealing sensitive information, such as
personally identifiable information (Zhu, 2021). In addition, the model can be trained on the residual data in
parallel, ensuring that important patterns and insights are recorded without jeopardizing data privacy. Data
masking allows federated learning systems to obtain valuable insights while safeguarding personal data by
forging a compromise between privacy preservation and model efficacy (Zhu, 2021).

Participating in numerous important strategies aimed at maintaining data security, privacy, and
effectiveness in responding to various threats is what all these processes have in common. Furthermore, these
methods demonstrate resilience when evaluated on real-life data, proving stability and flexibility in response
to different types of incursions. This progresses the Robust Federated Learning (RFL) technique in protecting
privacy during training in different environments and architectures that the framework is unfamiliar with.
RFL takes internal dangers into account, in contrast to SFL techniques that ensure the accuracy of computation
results and shield the system from outside threats (Zhang, 2023). To highlight the significance of data processing
for data privacy, Table 3 displays the relationship between data processing techniques and FL approaches.

3.3. Federated Learning Approaches in Data Privacy

We restricted our analysis to six main techniques in the field of federated learning: differential privacy,
homomorphic encryption, pruning, SMC, ZKP, and secure aggregation protocols. These methods cover a
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Table 3: Relation Between Data Transfer Methods and FL Approaches

Data Transfer Method Federated Learning Approaches 

Data Sampling Secure Aggregation 

Data Perturbation Differential Privacy, Secure Multiparty Computation 

Data Encryption Homomorphic Encryption 

Data Masking Differential Privacy, Secure Multiparty Computation, Secure Aggregation, 
Pruning 

variety of approaches and methods intended to protect data privacy and confidentiality throughout the
collaborative training procedure. The topic at hand includes a breakdown of the limitations of each strategy,
how well it works in various contexts, what its key goals are, and the methods used to protect privacy
requirements. We hope to clarify the complex workings of these methods and any obstacles they might face in
practical application by closely examining them all. To enhance comprehension of the landscape of federated
learning techniques and their implications for data privacy and security in distributed computing systems, it
is also our aim to offer insights into the specific domains in which each approach performs well.

3.3.1. Differential Privacy

Differential privacy is one technique in which a randomized process is deemed differentially private if changing
one input element results in only a minor variation in the output distribution. This means that no inferences
can be made regarding whether or not a certain sample was used in the learning process. Due to the fact that
increasing noise may erode accuracy, there is an inherent trade-off between achieving a high level of model
accuracy and utilizing differential privacy (Yang et al., 2020a). By protecting personal information on user
devices, guaranteeing individual privacy, and combining client data in a reliable setting, federated learning
and differential privacy improve privacy (Stojkovic, 2022). This strategy improves overall privacy protection,
alleviates worries, and minimizes the possibility that models hold memorized personal data. Works that
specifically address differential privacy include PrivColl (Zhang et al., 2020), QMGeo (Wang, 2023), PPML-
Omics (Zhou et al., 2024), FedRKG (Yao et al., 2024), and lots more, often in conjunction with other methods.
PrivColl by (Zhang et al., 2020) addresses privacy issues in collaborative learning by utilizing lightweight
additive secret sharing approaches to improve model accuracy while reducing computing overhead. It does,
however, criticize these approaches for either significantly increasing computational and communication
costs or jeopardizing model correctness. In response, the framework trumps traditional techniques such as
differential privacy and safe multiparty computation. On the other hand, QMGeo (Wang, 2023) proposes a
stochastic method called stochastic quantization. It utilizes a mixed geometric distribution to bolster privacy
preservation within frameworks employing differential privacy (DP). By employing randomization for DP
without introducing additive noise, this approach demonstrates that, despite the limitations of current
methods, quantization techniques can enhance both privacy preservation and communication efficiency
within federated learning (FL) frameworks. FedRKG (Yao et al., 2024) is a federated recommendation system
that addresses privacy issues in FL recommendation systems by utilizing a global knowledge graph (KG)
built from publicly accessible item data. Utilizing Local Differential Privacy (LDP) and pseudo-labeling, it
ensures privacy preservation while out-performing centralized algorithms in terms of performance. The PPML-
Omics (Zhou et al., 2024), however, offers a privacy-preserving technique for omics data analysis that employs
a decentralized differential private federated learning algorithm to protect patient privacy in healthcare. In
comparison to previous approaches, this study delivers strong privacy assurances. By using decentralized
frameworks for privacy preservation and competitive performance, both strategies emphasize the crucial role
that differential privacy plays in FL. Even if the domains of these studies differ, their foundational objective,
which is to assure data privacy preservation using differential privacy strategies, underlines the significance
of data privacy.

3.3.2. Homomorphic Encryption

Homomorphic Encryption (HE) is a type of encryption that allows operations on encrypted data without
decryption. This cryptosystem converts data into ciphertext for machine learning. It converts data into
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ciphertext that can be examined and used as if it were still in its original form (Gillis, 2022). There are three
common types: Partial HE (PHE), Some-what HE (SHE), and Fully HE (FHE) (Kishiyama, 2023). PHE,
introduced in 1978, allows operations while data remains encrypted, but it’s the least secure. SHE, also
from 1978, can perform addition and multiplication but introduces errors with each operation. FHE, a
newer scheme proposed in 2009, allows unlimited mathematical operations on encrypted data, but it
incurs high computational costs and large ciphertexts. Despite its challenges, FHE controls the size of
mathematical operations to prevent unmanageable growth. It offers several advantages, particularly in
cloud services, where it preserves privacy and allows data sharing without compromising sensitive
information. However, encryption in these services can be complex and time-consuming. Fully Homomorphic
encryption (FHE) is also criticized for its slow processing speed, making it impractical for certain
applications, despite its potential benefits for complex datasets. A recent HE- based framework, HElium
(Gunther, 2023), has native support for Proxy Re-Encryption (PRE), increasing its effectiveness for private
data analysis in multi-party environments. By automating parameterization and circuit optimizations, it
reduces overhead and makes FHE accessible to non-cryptographers. Utilizing homomorphic encryption,
Blind-Touch (Choi, 2023) is a machine-learning-driven fingerprint authentication system that addresses
privacy issues in cloud and web contexts. It leverages a clustered server design for scalability, optimizes
feature vectors for distributed architectures, and compresses authentication results. Transactional anonymity
problems related to simple stealth address systems are avoided by the additional effort of HE-DKSAP (Yan,
2023), a privacy-enhancing protocol for blockchain transactions. For programmable blockchains, it provides
a workable way to protect transaction privacy.

3.3.3. Pruning

Pruning is a strategy used in neural networks to improve efficiency by reducing size and complexity, eliminating
redundancies and over-parameterization, and thereby reducing training time (Yu et al., 2021). Federated
pruning maintains accuracy through frequent pruning at various stages, further optimizing computing and
communication costs in federated learning systems (Lin, 2022). Pruning can help avoid data breaches and
safeguard privacy by deleting components that are susceptible or redundant. It can also strengthen the
resistance of the model against adversarial attacks and model poisoning by eliminating weights and neurons
that are obsolete (Yang et al., 2020a). Although pruning keeps computing costs down without compromising
accuracy, its time-consuming nature makes practical use challenging. Numerous fields, including computer
vision, reinforcement learning, neural networks, and natural language processing, use this method extensively
(Huang et al., 2023). FedDIP by (Long, 2023), an innovative federated learning system, streamlines parameter
exchange while retaining accuracy using error feedback and dynamic model pruning. With incremental
regularization, FedDIP achieves severe model sparsity and outperforms other pruning techniques. Another
framework (Liu, 2023) uses partial model pruning and personalization to improve learning accuracy on
resource-constrained devices. As demonstrated by testing findings demonstrating substantial cost savings
compared to typical federated learning approaches, the model’s split into global and personalized components
minimizes computation and communication latency. PriPrune, as put forth by (Chu et al., 2023), presents
privacy-aware pruning in federated learning with a maximum limit on information leakage. PriPrune achieves
a better balance between privacy and precision than other approaches by using customized defensive masks
and varying the pruning rate. In addition (Ma et al., 2023) recommends using neural network model pruning
in conjunction with federated topic modeling to safeguard data privacy and accelerate model training. Notably,
the two strategies it suggests for figuring out the pruning rate to strike a compromise between training speed
and model inference time allow for notable increases in training speed without sacrificing model performance.
Although pruning has a lot of potential in the realm of data privacy with FL and cutting-edge frameworks and
methodologies demonstrate this, there are a few possible drawbacks to using pruning. Firstly, pruning could
make communication overhead worse since it would demand more delay and bandwidth when trimmed
models or update parameters are exchanged across dispersed nodes. Secondly, federated learning systems
may become less efficient and scalable because of the complexity added by incorporating pruning algorithms.
Thirdly, pruning raises security and privacy problems since it can unintentionally reveal private information
and expose itself to privacy assaults. Moreover, the performance of federated learning settings with numerous
data sources may be negatively impacted by excessive pruning, as it could lead to the loss of significant model
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descriptions. By emphasizing area-based implementation, more recent frameworks and research can help
overcome these drawbacks.

3.3.4. Secure Multiparty Computation (SMC)

SMC is a technology that improves privacy and security in federated learning processes by allowing distant
entities to collaborate without revealing confidential data (Maltitz and Carle, 2018). It makes aggregate statistics
or model updates easier while maintaining the privacy of individual data contributions through the use of
cryptographic protocols for secret sharing and secure function evaluation (Yu and Cui, 2022). SMC can
improve data privacy, ease regulatory compliance, and reduce data breaches and unwanted access in federated
learning. This integration enhances trust among participants and facilitates the broader adoption of federated
learning frameworks. The work of (Hassani, 2022) introduces PHY-Fed, a new framework for improving FL
algorithms that focuses on fixing problems in existing FL methods, especially those using SMC or differential
privacy. PHY-Fed helps protect data privacy by reducing the chances of drawing wrong conclusions and
lowering the accuracy of traditional FL methods. The research discussed in (Byrd, 2020) examines the combi-
nation of SMC and differential privacy within federated learning to enhance data privacy in financial
applications while maintaining model accuracy. In financial firms, this method fosters confidence and
collaboration by reducing the coordinating server’s capacity to extract sensitive client information. It is
applicable to activities such as fraud detection, credit origination, and efficient trade execution. While
addressing present shortcomings in data privacy techniques, the implementation of SMC in FL can help
strengthen data privacy in critical industries like financial applications, as pointed out in (Hassani, 2022)
and (Byrd, 2020). There may still be some obstacles to fully guaranteeing data privacy even with SMC, which
bring encouraging opportunities for enhancing privacy protection. Potential information leaks during the
aggregation process and difficulties balancing the trade-off between model accuracy and privacy preservation
are a couple of these issues. Notwithstanding these challenges, the addition of SMC and differential privacy
to FL frameworks holds potential for enhancing data privacy and opening the door for innovative data
privacy research.

3.3.5. Zero-Knowledge Proofs (ZKP)

Zero-knowledge proofs are a type of cryptography where an entity can prove to another entity that they know
a given value ’x’ without giving away any additional details except that they know it. In the context of
federated learning, ZKPs serve as a pivotal tool for ensuring data privacy as they allow computing processes
to be verified without requiring access to plain-text local data (Xing et al., 2023). This method is particularly
important when there is strict privacy legislation or standards that necessitate additional protective measures
to reduce the possibility of private data being inadvertently disclosed. Scholars can benefit greatly from ZKPs
by using them to verify computations, establish reliability, and safeguard data privacy by demonstrating the
accuracy of their findings without disclosing private information or compromising privacy (Nguyen and
Thai, 2022). Nowadays, ZKPs are utilized for identity verification, voting and password privacy, and
membership authentication since they preserve anonymity for users (Yoaquim, 2022). While its application is
expanding quickly, it is also a widely employed cryptographic approach in the Bitcoin sector (Xing et al.,
2023). RiseFL, described in the paper (Zhu et al., 2023), is a novel approach to safe and verifiable data
collaboration in federated learning environments. It uses secure aggregation with ZKP to handle input privacy
and integrity concerns. While tested on real-world data, RiseFL surpasses cutting-edge baselines such as
ACORN, RoFL, and EIFFeL, providing faster client computation. RiseFL introduces a probabilistic integrity
check method and a hybrid commitment scheme for improved Byzantine robustness. zkDFL, in the work
(Ahmadi and Nourmohammadi, 2023), is a unique technique that leverages ZKP to allow clients to
communicate model parameters with a trustworthy server, guaranteeing the integrity and transparency of the
aggregation process, hence improving privacy preservation and scalability in decentralized federated learning
systems. In addition to saving gas expenses, zkDFL improves the aggregation process’s scalability, verifiability,
and privacy enforcement. To determine its limitations and suitability for use in practical situations, further
study was recommended. Using the Fiat-Shamir heuristic and the MPC-in-the-head paradigm, the work in
(Gvili et al., 2021) of TurboIKOS provides a zero-knowledge argument for general arithmetic circuits, reducing
communication per multiplication gate. It works well with Picnic-style post-quantum digital signatures;
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however, there are additional research requirements specified. In the work of zkCNN (Liu et al., 2021), the
protocol utilizes a sum- check for fast Fourier transforms, ensuring the integrity of machine learning predictions
without leaking model information, resulting in significant efficiency improvements while further study is
needed. The NuLink platform by (Pawn et al., 2024), facilitates safe data storage, computation outsourcing,
and data exchange by integrating ZKP technologies for privacy and security in decentralized applications.
ZKPs ensure that all nodes operate decently by promoting trust and discouraging deception. In contrast, the
BOOMERANG protocol (Ankele and Haddadi, 2024), which has proven effective in managing high user
numbers, suggests a decentralized incentive system that preserves privacy by utilizing cryptographic
accumulators and ZKPs to assure verifiability and privacy preservation in incentive systems. Nevertheless,
additional investigation is necessary to evaluate their scalability, compatibility with current systems, and
any drawbacks in practical use. Aside from these, some noteworthy works are in (Wang et al., 2023a) regarding
ZKP mixers in the context of blockchain privacy solutions, in (Wang et al., 2023b) regarding the use of ZKPs
to mitigate the vulnerability of FL systems to centralized aggregators, and in (Berke et al., 2023) regarding a
ZKP-based tax disclosure system that enables stakeholders to share specific information while keeping virtually
nothing. Despite their advantages, latency costs and translation are significant challenges in ZKP transactions,
which rely on mathematical formulas and require time-consuming processing. These constraints hinder
scalability, efficiency, and data management, especially for geographically distributed parties, posing
significant challenges in transaction processing. To address these constraints and potential mitigating
strategies, comprehensive and long-term investigations are therefore required for ZKP.

3.3.6. Secure Aggregation Protocols

Protecting privacy and promoting cooperative learning are two important functions of Secure Aggregation
Protocols in Federated Learning. They make it possible for several parties to add up their values without
sharing them, each managing private data (Bonawitz et al., 2016). In situations where stringent privacy
protection is necessary to avoid the inference of personal information, this ensures that the server can obtain
the collective model of users without gaining access to their individual models (Nguyen and Thai, 2022). In a
single training round, traditional secure aggregation methods give individual user privacy top priority.
However, this technique may result in noteworthy privacy weaknesses spanning numerous training rounds.
To address this issue, emerging frameworks like Multi-RoundSecAgg provide multi-round privacy assurances
to improve overall data protection (So et al., 2021). A secure aggregation protocol for FL called FSSA (Luo et al.,
2023) tackles faults in current techniques while increasing efficiency and lowering dropout rates. It ensures
data privacy and keeps security preserved even in the event of client dropouts. By covertly aggregating user-
trained models, EPPDA (Song et al., 2023) is a privacy-preserving data aggregation approach for FL that
ensures privacy. Because of its fault tolerance, which minimizes the amount of computation and
communication resources needed, it can continue to function even when certain participants disconnect.
Using FL in conjunction with the BERT model for sequence classification in VANETs, FL-BERT (Ahsan et al.,
2024) is a unique intrusion detection technique. When using individual devices for model aggregation, it
safely stores sensitive data to protect data privacy. Sentinel (Feng et al., 2023), on the other hand, offers a three-
step aggregation mechanism as a defense against poisoning attempts in decentralized FL. Both strategies
concentrate on data security and privacy in FL and provide complimentary answers to various data security
issues with secure aggregation methods in federated learning. Prioritizing the usage of public randomness to
reduce communication rounds and per-user expenses is the work in (Van Kempen et al., 2023), LiSA, yet it
may encounter issues with scalability and committee selection. On the other hand, AHSecAgg (Zhang et al.,
2023) uses additive homomorphic masks to mitigate privacy issues in FL while preserving model accuracy
and minimizing computation complexity. Furthermore, the TSKG technique improves secure aggregation in
cross-silo situations, doing away with the need for secret sharing during aggregations and demonstrating
higher computational effectiveness than existing protocols. Still, scalability and robustness problems exist,
especially in highly dynamic or hostile contexts, leading to the need for more practical research.

3.4. Risks and Vulnerabilities of Federated Learning

Federated learning is quickly becoming a ground-breaking idea for protecting valuable and sensitive
information in today’s data-rich environment. Federated Learning’s collaborative model training approach
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presents several issues, especially regarding anonymity, but it also shows promise for protecting data privacy.
In a review paper by Ding et al. (2022) outlined the primary challenges and chances to improve federated
learning. Among the noteworthy issues raised are the complexity of memory and time, the risk of catastrophic
forgetting, data incompleteness, complicated data connections, and data leakage that compromises privacy.
Since both accuracy of learning and raw data security depends on collaborative learning, they are yet unreached
requirements in terms of protecting data privacy (Nguyen and Thai, 2022). As worrying as these problems are,
there may be a more immediate one to make sure a few others come before. The study carried out (Zhang et al.,
2021) tackles several major issues, including trustworthiness, system heterogeneity, insufficient computational
end-devices, narrow network bandwidth, and limited on-device resources. Furthermore, none of these problems
or difficulties are directly related to the others; therefore, no remedy might lessen the difficulties as a whole.
Numerous federated mechanisms have been proposed to address these obstacles to the greatest extent possible,
but they continue to raise concerns about the vulnerability of data privacy protection.

In the differential privacy approach, centralizing data collection helps reduce privacy leakage, prevent
data imbalance, and enhance fairness. However, it overlooks concerns such as computational overhead, data
poisoning, backdoor attacks, and reliance on assumptions. Conversely, homomorphic encryption enhances
data security but shares many vulnerabilities with differential privacy, exacerbating key management
challenges. Pruning addresses communication overhead, bandwidth constraints, and privacy concerns but
introduces challenges with non-IID data and compromises performance and interpretability. Secure multiparty
computation offers enhanced privacy protection compared to other methods, but it introduces additional
challenges such as protocol complexity, scalability issues, and trust biases. Zero-knowledge proofs are
relatively less susceptible to poisoning and backdoor attacks, thereby improving data security. However, they
significantly increase computational overhead, bandwidth latency, technical complexity, and the risk of
catastrophic forgetting. On the other hand, secure aggregation techniques are prone to issues such as reliance
on aggregation type, compromised anonymity, trust biases, and scalability limitations. Most approaches face
vulnerabilities due to the computational and communication overheads associated with their complexity
and are ill-equipped to handle emerging challenges arising from their heterogeneity. The most important and
enduring problems, aside from everything else, are Privacy Leakage, Computational Overhead, Communication
Overhead, Non-IID Data, Interpretability, and Scalability. Table 4 provides a summary of the vulnerabilities
that the FL methods under discussion are susceptible to.

Table 4: Vulnerabilities of FL Approaches

FL Approach Privacy 
Leakage 

Computational 
Overhead 

Communication 
Overhead 

Non-IID 
Data 

Interpretability Scalability 

Differential 
Privacy ✓ X X ✓ X X 

Homomorphic 
Encryption X ✓ ✓ X X X 

Pruning X ✓ X X ✓ ✓ 

Secure Multiparty 
Computation ✓ ✓ ✓ X X ✓ 

Zero Knowledge 
Proofs ✓ ✓ ✓ X X X 

Secure 
Aggregation ✓ ✓ ✓ X X X 

 Note: ✓  - The Approach is prone to vulnerability; X - The approach is not prone to vulnerability.

FL techniques have a significant impact on protecting data privacy, yet they encounter numerous challenges
such as cost-effectiveness, bandwidth limitations, communication resources, privacy protection, parameter
tuning, specialist requirements, and deployment. Differential privacy demands rigorous parameter tuning to
establish a balance between privacy and accuracy, though the inclusion of random noise can have an
unfavorable effect on model precision. Even though homomorphic encryption provides strong data privacy
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without noise, it has a large computational overhead and requires a lot of bandwidth and communication
resources. Pruning approaches aim to reduce model complexity and communication costs, but they may
compromise model interpretability and efficiency. SMC methods allow for cooperative computing while
maintaining data privacy, although they may come with significant computational and communication
overhead. On the other hand, ZKPs provide strong privacy guarantees free from noise, but they come with a
high computational burden and significant proof transmission band- width cost. Secure aggregation methods
combine model updates and protect data privacy; however, they can cause issues with anonymity compromises
and scalability constraints. To enable safe and efficient aggregation, it is critical to address scalability issues
and make sure resources are allocated effectively, as well as ensuring cost effectiveness and minimizing
communication overhead while implementing differential privacy. A summary of the value of each FL
approach’s constraints is provided in Table 5.

Table 5: Constraints of FL Approaches

Note: H - High; L - Low; M - Moderate.

Constraints DP HE Pruning SMC ZKPs SA 

Cost Effectiveness H H L L L L 

Bandwidth L L L H H H 

Communication Resources L L L M M M 

Privacy H H L H H L 

Careful Parameter Tuning H L L H H L 

Specialist Requirement H H L L L L 

Deployment L H H M M M 

4. Conclusion

To sum up, this review study accomplishes the primary purpose of exploring federated learning techniques
aimed at enhancing data privacy. Through careful consideration of the research objectives presented in the
introduction, this study spans different FL techniques, examines the nuances of the FL transfer process,
assesses current methodology, and identifies relevant risks and weaknesses. By employing a methodical
approach to literature review, the work carefully looks at a large number of pertinent studies, which strengthens
the validity and reliability of its findings. This establishes a strong basis for subsequent studies in FL and data
privacy preservation, in addition to providing a thorough overview of the context of FL’s data privacy protection
system at present. This work is significant because it provides scholars and practitioners with useful insights
into current methods and identifies future directions for innovation and progress in the field of FL-based data
privacy protection. Moreover, the results of this review study highlight FL’s potential as a viable strategy for
protecting data privacy in distributed learning contexts. FL has the potential to become a key component of
privacy-preserving machine learning with improvements in FL techniques and a better comprehension of
associated hazards. Future work on novel ways to improve FL’s privacy guarantees might look into including
safe multiparty computation, homomorphic encryption, or differential privacy methods. Furthermore, more
research into resolving FL’s scale problems and non-IID data concerns could enhance the technology’s
effectiveness in protecting user privacy across a range of applications and domains. All things considered,
this work advances the field of FL for protecting data privacy and offers insightful information for future
studies in this area.
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