
Henry Garrett / Int.J.Pure&App.Math.Res. 3(2) (2023) 102-124 Page 102 of 124

Article Info

Abstract

In this scientific research, some extreme notions and Neutrosophic notions are defined
on the family of SuperHyperGraphs and Neutrosophic SuperHyperGraphs. Some
well-known classes are used in this scientific research. A basic familiarity with
Neutrosophic SuperHyper Eulerian-Path-Cut theory, SuperHyperGraphs, and
Neutrosophic SuperHyperGraphs theory are proposed.
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1. Neutrosophic Preliminaries of this Scientific Research on the Redeemed Ways

In this section, the basic material in this scientific research, is referred to [Single Valued Neutrosophic Set] ((Henry,
2023), Definition 2.2, p. 2), [Neutrosophic Set] ((Henry, 2023), Definition 1.1, p. 1), [Neutrosophic SuperHyperGraph
(NSHG)] ((Henry, 2023), Definition 2.5, p. 2), [Characterization of the Neutrosophic SuperHyperGraph (NSHG)] ((Henry,
2023), Definition 2.7, p. 3), [t-norm]((Henry, 2023), Definition 2.7, p. 3), and [Characterization of the Neutrosophic
SuperHyperGraph (NSHG)] ((Henry, 2023), Definition 2.7, p. 3), [Neutrosophic Strength of the Neutrosophic
SuperHyperPaths] ((Henry, 2023), Definition 5.3, p. 7), and [Different Neutrosophic Types of Neutrosophic
SuperHyperEdges (NSHE)] ((Henry, 2023), Definition 5.4, p. 7). Also, the new ideas and their clarifications are addressed
to Henry (2023).

Definition 1.1

Different Neutrosophic Types of Neutrosophic SuperHyperEulerian-Path-Cut

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider a Neutrosophic SuperHyperSet V
= V

1
, V

2
, ..., V

s
 and E = E

1
, E

2
, ..., E

z
. Then either V’  or E’ is called
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(i) Neutrosophic e-SuperHyperEulerian-Path-Cut if the following expression is called Neutrosophic e-
SuperHyperEulerian-Path-Cut criteria holds

:aE P P   is a SuperHyperPath and it has all number of SuperHyperEdges;

(ii) Neutrosophic re-SuperHyperEulerian-Path-Cut if the following expression is called Neutrosophic re-
SuperHyperEulerian-Path-Cut criteria holds:

:aE P P   is a SuperHyperPath and it has the all number of SuperHyperEdges;

and |E
i
|
NEUTROSOPIC CARDINALITY

 = |E
j
|
NEUTROSOPIC CARDINALITY

;

(iii) Neutrosophic v-SuperHyperEulerian-Path-Cut if the following expression is called Neutrosophic v-
SuperHyperEulerian-Path-Cut criteria holds:

:aV P P   is a SuperHyperPath and it has the all number of SuperHyperEdges;

(iv) Neutrosophic rv-SuperHyperEulerian-Path-Cut if the following expression is called Neutrosophic v-
SuperHyperEulerian-Path-Cut criteria holds:

:aV P P   is a SuperHyperPath and it has the all number of SuperHyperEdges;

and |V
i
|
NEUTROSOPIC CARDINALITY

 = |V
j
 |

NEUTROSOPIC CARDINALITY
;

(v) Neutrosophic SuperHyperEulerian-Path-Cut if it’s either of Neutrosophic e-SuperHyperEulerian-Path-Cut,
Neutrosophic  re-SuperHyperEulerian-Path-Cut, Neutrosophic v-SuperHyperEulerian-Path-Cut, and Neutrosophic
rv-SuperHyperEulerian-Path-Cut.

Definition 1.2

(Neutrosophic) SuperHyperEulerian-Path-Cut

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider a Neutrosophic SuperHyperEdge
(NSHE) E = {V

1
, V

2
, . . . , V

s
}. Then E is called

(i) An Extreme SuperHyperEulerian-Path-Cut if it is either of Neutrosophic e-SuperHyperEulerian-Path-Cut,
Neutrosophic  re-SuperHyperEulerian-Path-Cut, Neutrosophic v-SuperHyperEulerian-Path-Cut, and Neutrosophic
rv-SuperHyperEulerian-Path-Cut and  (NSHG) for an Extreme SuperHyperGraph NSHG : (V, E) is the maximum
Extreme cardinality of an Extreme SuperHyperSet S of high Extreme cardinality of the Extreme SuperHyperEdges in
the conseNeighborive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such that
they form the Extreme SuperHyperEulerian-Path-Cut;

(ii) A Neutrosophic  SuperHyperEulerian-Path-Cut if it’s either of Neutrosophic e-SuperHyperEulerian-Path-Cut,
Neutrosophic re-SuperHyperEulerian-Path-Cut,  Neutrosophic  v-SuperHyperEulerian-Path-Cut, and Neutrosophic
rv-SuperHyperEulerian-Path-Cut and  (NSHG) for a Neutrosophic SuperHyperGraph NSHG : (V, E) is the maximum
Neutrosophic cardinality of the Neutrosophic SuperHyperEdges of a Neutrosophic SuperHyperSet S of high
Neutrosophic cardinality conseNeighborive Neutrosophic SuperHyperEdges and Neutrosophic
SuperHyperVertices such that they form the Neutrosophic  SuperHyperEulerian-Path-Cut;

(iii) An  Extreme  SuperHyperEulerian-Path-Cut  SuperHyperPolynomial  if it is either of Neutrosophic e-
SuperHyperEulerian-Path-Cut, Neutrosophic re-SuperHyperEulerian-Path-Cut,  Neutrosophic  v-
SuperHyperEulerian-Path-Cut, and Neutrosophic rv-SuperHyperEulerian-Path-Cut and  (NSHG) for an Extreme
SuperHyperGraph NSHG : (V, E) is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined
as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme
SuperHyperSet S of high Extreme cardinality conseNeighborive Extreme SuperHyperEdges and Extreme
SuperHyperVertices such that they form the Extreme SuperHyperEulerian-Path-Cut; and the Extreme power is
corresponded to its Extreme coefficient;

(iv) A Neutrosophic  SuperHyperEulerian-Path-Cut  SuperHyperPolynomial if it is either of Neutrosophic e-
SuperHyperEulerian-Path-Cut, Neutrosophic re-SuperHyperEulerian-Path-Cut,  Neutrosophic  v-
SuperHyperEulerian-Path-Cut, and Neutrosophic rv-SuperHyperEulerian-Path-Cut and  (NSHG) for a Neutrosophic
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SuperHyperGraph NSHG : (V, E) is the Neutrosophic SuperHyperPolynomial contains the Neutrosophic coefficients
defined as the Neutrosophic number of the maximum Neutrosophic cardinality of the Neutrosophic
SuperHyperEdges of a Neutrosophic SuperHyperSet S of high Neutrosophic cardinality conseNeighborive
Neutrosophic SuperHyperEdges and Neutrosophic SuperHyperVertices such that they form the Neutrosophic
SuperHyperEulerian-Path-Cut; and the Neutrosophic power is corresponded to its Neutrosophic coefficient;

(v) An Extreme V-SuperHyperEulerian-Path-Cut if it is either of Neutrosophic e-SuperHyperEulerian-Path-Cut,
Neutrosophic  re-SuperHyperEulerian-Path-Cut, Neutrosophic v-SuperHyperEulerian-Path-Cut, and Neutrosophic
rv-SuperHyperEulerian-Path-Cut and  (NSHG) for an Extreme SuperHyperGraph NSHG : (V, E) is the maximum
Extreme cardinality of an Extreme SuperHyperSet S of high Extreme cardinality of the Extreme SuperHyperVertices
in the conseNeighborive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such
that they form the Extreme SuperHyperEulerian-Path-Cut;

(vi) A Neutrosophic V-SuperHyperEulerian-Path-Cut if it is either of Neutrosophic e-SuperHyperEulerian-Path-Cut,
Neutrosophic  re-SuperHyperEulerian-Path-Cut,  Neutrosophic  v-SuperHyperEulerian-Path-Cut, and Neutrosophic
rv-SuperHyperEulerian-Path-Cut and  (NSHG) for a Neutrosophic SuperHyperGraph NSHG : (V, E) is the maximum
Neutrosophic cardinality of the Neutrosophic SuperHyperVertices of a Neutrosophic SuperHyperSet S of high
Neutrosophic cardinality conseNeighborive Neutrosophic SuperHyperEdges and Neutrosophic SuperHyperVertices
such that they form the Neutrosophic  SuperHyperEulerian-Path-Cut;

(vii) An Extreme V-SuperHyperEulerian-Path-Cut SuperHyperPolynomial if it’s either of Neutrosophic e-
SuperHyperEulerian-Path-Cut, Neutrosophic re-SuperHyperEulerian-Path-Cut, Neutrosophic v-
SuperHyperEulerian-Path-Cut, and Neutrosophic rv-SuperHyperEulerian-Path-Cut and  (NSHG) for an Extreme
SuperHyperGraph NSHG : (V, E) is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined
as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme
SuperHyperSet S of high Extreme cardinality conseNeighborive Extreme SuperHyperEdges and Extreme
SuperHyperVertices such that they form the Extreme SuperHyperEulerian-Path-Cut; and the Extreme power is
corresponded to its Extreme coefficient;

(viii) A Neutrosophic  SuperHyperEulerian-Path-Cut SuperHyperPolynomial if it’s either of Neutrosophic e-
SuperHyperEulerian-Path-Cut, Neutrosophic re-SuperHyperEulerian-Path-Cut,  Neutrosophic  v-
SuperHyperEulerian-Path-Cut, and Neutrosophic rv-SuperHyperEulerian-Path-Cut and  (NSHG) for a
Neutrosophic SuperHyperGraph NSHG : (V, E) is the Neutrosophic SuperHyperPolynomial contains the
Neutrosophic coefficients defined as the Neutrosophic number of the maximum Neutrosophic cardinality of the
Neutrosophic SuperHyperVertices of a Neutrosophic SuperHyperSet S of high Neutrosophic cardinality
conseNeighborive Neutrosophic SuperHyperEdges and Neutrosophic SuperHyperVertices such that they form
the Neutrosophic SuperHyperEulerian-Path-Cut; and the Neutrosophic power is corresponded to its
Neutrosophic coefficient.

2. Neutrosophic SuperHyperEulerian-Path-Cut but as the Extensions Excerpt from Dense and
Super Forms

Definition 2.1.: Neutrosophic Event

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability Eulerian-
Path-Cut. Any Neutrosophic k-subset of A of V is called Neutrosophic k-event and if k = 2, then Neutrosophic subset
of A of V is called Neutrosophic event. The following expression is called Neutrosophic probability of A.

   
a A

E A E a


 ...(1)

Definition 2.2.: Neutrosophic Independent

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability Eulerian-
Path-Cut. s Neutrosophic k-events A

i
, i   I is called Neutrosophic s-independent if the following expression is called

Neutrosophic s-independent criteria

   i I i i
i I

E A P AY



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And if s = 2, then Neutrosophic k-events of A and B is called Neutrosophic independent. The following expression
is called Neutrosophic independent criteria

     E A B P A P B  ...(2)

Definition 2.3.: Neutrosophic Variable

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability Eulerian-
Path-Cut. Any k-function Eulerian-Path-Cut like E is called Neutrosophic k-Variable. If k = 2, then any 2-function
Eulerian-Path-Cut like E is called Neutrosophic Variable.

The notion of independent on Neutrosophic Variable is likewise.

Definition 2.4.: Neutrosophic Expectation

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability Eulerian-
Path-Cut. A Neutrosophic k-Variable E has a number is called Neutrosophic Expectation if the following expression is
called Neutrosophic Expectation criteria.

     
a V

Ex E E P 



Definition 2.5.: Neutrosophic Crossing

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability Eulerian-
Path-Cut. A Neutrosophic number is called Neutrosophic Crossing if the following expression is called Neutrosophic
Crossing criteria

Cr(S) = min{Number of Crossing in a Plane Embedding of S}.

Lemma 2.6.

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability Eulerian-
Path-Cut. Let m and n propose special Eulerian-Path-Cut. Then with m > 4n.

Proof: Consider a planar embedding G of G with cr(G) crossings. Let S be a Neutrosophic random k-subset of V
obtained by choosing each SuperHyperVertex of G Neutrosophic independently with probability Eulerian-Path-Cut
p := 4n/m, and set H := G[S] and H := G[S].

Define random variables X, Y, Z on V as follows: X is the Neutrosophic number of SuperHyperVertices, Y is the
Neutrosophic number of SuperHyperEdges, and Z is the Neutrosophic number of crossings of H. The trivial
bound noted above, when applied to H, yields the inequality Z > cr(H) > Y – 3X. By linearity of Neutrosophic
Expectation,

E(Z) > E(Y ) – 3E(X).

Now E(X) = pn, E(Y ) = p2m (each SuperHyperEdge having some SuperHyperEnds) and E(Z) = p4cr(G) (each
crossing being defined by some SuperHyperVertices). Hence

p4cr(G) > p2m – 3pn

Dividing both sides by p4, we have:

 
 

3 2
3 3

3 1

644 /

pm n n
cr G m n

p n m


  

Theorem 2.7.

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability
Eulerian-Path-Cut. Let P be a SuperHyperSet of n points in the plane, and let l be the Neutrosophic number
of SuperHyper Lines in the plane passing through at least k + 1 of these points, where 1 < k < 2, 2n. Then
l < 32n2/k3.
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Proof: Form a Neutrosophic SuperHyperGraph G with SuperHyperVertex SuperHyperSet P whose SuperHyperEdge are
the segments between conseNeighborive points on the SuperHyperLines which pass through at least k + 1 points of
P. This Neutrosophic SuperHyperGraph has at least kl SuperHyperEdges and Neutrosophic crossing at most l choose
two. Thus either kl < 4n, in which case l < 4n/k < 32n2/k3, or l2/2 > l choose 2 > cr(G) < (kl)3/64n2 by the Neutrosophic
Crossing Lemma, and again l < 32n2/k3.

Theorem 2.8.

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability Eulerian-
Path-Cut. Let P be a SuperHyperSet of n points in the plane, and let k be the number of pairs of points of P at unit
SuperHyperDistance. Then k < 5n4/3.

Proof: Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability
Eulerian-Path-Cut. Draw a SuperHyperUnit SuperHyperCircle around each SuperHyperPoint of P. Let n

i
 be the

Neutrosophic number of these SuperHyperCircles passing through exactly i points of P. Then

1 11
0 and 0

2
n n

i ii n n k i in     

SuperHyperGraph H with SuperHyperVertex SuperHyperSet P whose SuperHyperEdges are the SuperHyperArcs
between conseNeighborive SuperHyperPoints on the SuperHyperCircles that pass through at least three
SuperHyperPoints of P. Then

 
1

1 2
3

2 2 2 2
n

i
i

e H in k n n k n




     

Some SuperHyperPairs of SuperHyperVertices of H might be joined by some parallel SuperHyperEdges. Delete from
H one of each SuperHyperPair of parallel SuperHyperEdges, so as to obtain a simple Neutrosophic SuperHyperGraph
G with e(G) > k – n. Now cr(G) < n(n – 1) because G is formed from at most n SuperHyperCircles, and any two
SuperHyperCircles cross at most twice. Thus either e(G) < 4n, in which case k < 5n < 5n4/3, or n2 > n(n – 1) > cr(G) > (k
– n)3/64n2 by the Neutrosophic Crossing Lemma, and k < 4n4/3 + n < 5n4/3.

Proposition 2.9.

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability Eulerian-
Path-Cut. Let X be a nonnegative Neutrosophic Variable and t a positive real number. Then

   E X
P X t

t
 

Proof:

             : : ,E X X a P a a V X a P a a V X a t     

    : ,tP a a V X a t t  

    : ,P a a V X a t 

 tP X t

Dividing the first and last members by t yields the asserted inequality.

Corollary 2.10.

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability Eulerian-
Path-Cut. Let X

n
 be a nonnegative integer-valued variable in a prob- ability Eulerian-Path-Cut (V

n
, E

n
), n > 1. If E(X

n
)

 0 as n  , then P (X
n
 = 0)  1 as n  .
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Theorem 2.11.

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability Eulerian-
Path-Cut. A special SuperHyperGraph in G

n,p
 almost surely has stability number at most [2p–1 log n|.

Proof: Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability
Eulerian-Path-Cut. A special SuperHyperGraph in G

n,p
 is up. Let G   G

n,p
 and let S be a given SuperHyperSet of k + 1

SuperHyperVertices of G, where k   N. The probability that S is a stable SuperHyperSet of G is (1 – p)(k+1)choose2, this
being the probability that none of the (k + 1)choose2 pairs of SuperHyperVertices of S is a SuperHyperEdge of the
Neutrosophic SuperHyperGraph G.

Let A
S
 denote the event that S is a stable SuperHyperSet of G, and let X

S
 denote the indicator Neutrosophic Variable

for this Neutrosophic Event. By equation, we have

E(X
S
) = P (X

S
 = 1) = P (A

S
) = (1 – p)(k+1)choose2

Let X be the number of stable SuperHyperSets of cardinality k + 1 in G. Then

 : , 1SX X S V S k   
and so, by those,

        1 2
: , 1 1 1

k choose

SE X E X S V S k n choose k p
      

We bound the right-hand side by invoking two elementary inequalities:

   
1

1 1
1 !

k
pn

n choose k and p e
k


   



This yields the following upper bound on E(X).

 
 

   
1 21 /2 1

1 ! 1 !

p k choosek pk kn e ne
E X

k k

   

 
 

Suppose now that k = [2p–1 log n|. Then k > 2p–1 log n, so ne–pk/2 < 1. Because k grows at least as fast as the logarithm
of n, implies that E(X)  0 as n  . Because X is integer-valued and nonnegative, we deduce from Corollary that P
(X = 0)  1 as n  . Consequently,, a Neutrosophic SuperHyperGraph in C

n,p
 almost surely has stability number at

most k.

Definition 2.12.: Neutrosophic Variance

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability Eulerian-
Path-Cut. A Neutrosophic k-Variable E has a number is called Neutrosophic Variance if the following expression is called
Neutrosophic Variance criteria.

V x(E) = Ex((X – Ex(X))2).

Theorem 2.13.

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability Eulerian-
Path-Cut. Let X be a Neutrosophic Variable and let t be a positive real number. Then

    
2

V X
E X Ex X t

t
  

Proof: Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability
Eulerian-Path-Cut. Let X be a Neutrosophic Variable and let t be a positive real number. Then

      
     

2

2 2
2 2

Ex X Ex X V X
E X Ex X t E X Ex X t

t t


      
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Corollary 2.14.

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability Eulerian-
Path-Cut. Let X

n
 be a Neutrosophic Variable in a probability Eulerian-Path-Cut (V

n
, E

n
), n > 1. If Ex(X

n
)/ = 0 and V (X

n
)

<< E2(X
n
), then

E(X
n
 = 0)  0 as n 

Proof: Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability
Eulerian-Path-Cut. Set X := X

n
 and t: = |Ex(X

n
)| in Chebyshev’s Inequality, and observe that E(X

n
 = 0) < E(|X

n
 – Ex(X

n
)| >

|Ex(X
n
)|) because |X

n
 – Ex(X

n
)| = |Ex(X

n
)| when X

n
 = 0.

Theorem 2.15.

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability Eulerian-
Path-Cut. Let G   G

n,1/2
. For 0 < k < n, set f (k) := (n choose k)2–(k choose 2) and let k” be the least value of k for which f (k)

is less than one. Then almost surely (G) takes one of the three values k* – 2, k* – 1, k*.

Proof: Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability
Eulerian-Path-Cut. As in the proof of related. Theorem, the result is straightforward.

Corollary 2.16.

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability Eulerian-
Path-Cut. Let G   G

n,1/2
 and let f and k* be as defined in previous Theorem. Then either:

(i) f (k*) << 1, in which case almost surely (G) is equal to either k* – 2 or k* – 1, or

(ii) f (k* – 1) >> 1, in which case almost surely (G) is equal to either k* – 1 or k*.

Proof: Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability
Eulerian-Path-Cut. The latter is straightforward.

Definition 2.17.: Neutrosophic Threshold

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability Eulerian-
Path-Cut. Let P be a monotone property of SuperHyperGraphs (one which is preserved when SuperHyperEdges are
added). Then a Neutrosophic Threshold for P is a function f (n) such that:

(i) If p << f (n), then G   G
n,p

 almost surely does not have P,,

(ii) If p >> f (n), then G   G
n,p

 almost surely has P..

Definition 2.18.: Neutrosophic Balanced

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability Eulerian-
Path-Cut. Let F be a fixed Neutrosophic SuperHyperGraph. Then there is a threshold function for the property of
containing a copy of F as a Neutrosophic SubSuperHyperGraph is called Neutrosophic Balanced.

Theorem 2.19.

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability Eulerian-
Path-Cut. Let F be a nonempty balanced Neutrosophic SubSuperHyperGraph with k SuperHyperVertices and l
SuperHyperEdges. Then n–k/l is a threshold function for the property of containing F as a Neutrosophic
SubSuperHyperGraph.

Proof: Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E). Consider S = (V, E) is a probability
Eulerian-Path-Cut. The latter is straightforward.

Example 2.20.

Assume a Neutrosophic SuperHyperGraph (NSHG) S is a pair S = (V, E) in the mentioned Neutrosophic Figures in every
Neutrosophic items.

p l
chk /
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• On Figure 1, the Neutrosophic SuperHyperNotion, namely, Neutrosophic SuperHyperEulerian-Path-Cut, is up. The
Neutrosophic Algorithm is Neutrosophicly straightforward.

C(NSHG)
Neutrosophic  Eulerian-Path-Cut

= {E
4
, E

5
, E

1
, E

2
}.

C(NSHG)
Neutrosophic Eulerian-Path-Cut SuperHyperPolynomial

= 2z5 + 2z3.

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut

= {V
i
   V

NSHG
}.

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut SuperHyperPolynomial

=  z|ViVNSHG|.

Figure 1: The Neutrosophic SuperHyperGraphs Associated to the Neutrosophic Notions of Neutrosophic
SuperHyperEulerian-Path-Cut in the Neutrosophic Example (3.20)

Figure 2: The Neutrosophic SuperHyperGraphs Associated to the Neutrosophic Notions of Neutrosophic
SuperHyperEulerian-Path-Cut in the Neutrosophic Example (3.20)
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• On Figure 2, the Neutrosophic SuperHyperNotion, namely, Neutrosophic SuperHyperEulerian-Path-Cut, is up. The
Neutrosophic Algorithm is Neutrosophicly straightforward.

C(NSHG)
Neutrosophic Eulerian-Path-Cut

= {}.

C(NSHG)
Neutrosophic Eulerian-Path-Cut SuperHyperPolynomial

= 0z0.

C(NSHG)
Neutrosophic  V-Eulerian-Path-Cut

= {}.

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut SuperHyperPolynomial

= 0z0.

• On the Figure 3, the Neutrosophic SuperHyperNotion, namely, Neutrosophic SuperHyperEulerian-Path-Cut, is up.
The Neutrosophic Algorithm is Neutrosophicly straightforward.

C(NSHG)
Neutrosophic  Eulerian-Path-Cut

= {}.

C(NSHG)
Neutrosophic Eulerian-Path-Cut SuperHyperPolynomial

= 0z0.

C(NSHG)
Neutrosophic  V-Eulerian-Path-Cut

= {}.

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut SuperHyperPolynomial

= 0z0.

• On the Figure 4, the Neutrosophic SuperHyperNotion, namely, Neutrosophic SuperHyperEulerian-Path-Cut, is up.
The Neutrosophic Algorithm is Neutrosophicly straightforward.

Figure 3: The Neutrosophic SuperHyperGraphs Associated to the Neutrosophic Notions of Neutrosophic
SuperHyperEulerian-Path-Cut in the Neutrosophic Example (3.20)
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C(NSHG)
Neutrosophic Eulerian-Path-Cut

= {E
1
, E

2
, E

3
, E

4
, E

5
}.

C(NSHG)
Neutrosophic Eulerian-Path-Cut SuperHyperPolynomial

 
z

NSHGi EE

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut

= {V
i
   V

NSHG
}.

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut SuperHyperPolynomial

= i NSHG
Z

V V

Figure 4: The Neutrosophic SuperHyperGraphs Associated to the Neutrosophic Notions of Neutrosophic
SuperHyperEulerian-Path-Cut in the Neutrosophic Example (3.20)

Figure 5: The Neutrosophic SuperHyperGraphs Associated to the Neutrosophic Notions of Neutrosophic
SuperHyperEulerian-Path-Cut in the Neutrosophic Example (3.20)
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• On Figure 5, the Neutrosophic SuperHyperNotion, namely, Neutrosophic SuperHyperEulerian-Path-Cut, is up. The
Neutrosophic Algorithm is Neutrosophicly straightforward.

C(NSHG)
Neutrosophic Eulerian-Path-Cut

= {}.

C(NSHG)
Neutrosophic Eulerian-Path-Cut SuperHyperPolynomial

= 0z0.

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut

= {}.

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut SuperHyperPolynomial

= 0z0.

• On Figure 6, the Neutrosophic SuperHyperNotion, namely, Neutrosophic SuperHyperEulerian-Path-Cut, is up. The
Neutrosophic Algorithm is Neutrosophicly straightforward.

C(NSHG)
Neutrosophic  Eulerian-Path-Cut

= {}.

C(NSHG)
Neutrosophic Eulerian-Path-Cut SuperHyperPolynomial

= 0z0.

C(NSHG)
Neutrosophic  V-Eulerian-Path-Cut

= {}.

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut SuperHyperPolynomial

= 0z0.

• On Figure 7, the Neutrosophic SuperHyperNotion, namely, Neutrosophic SuperHyperEulerian-Path-Cut, is up. The
Neutrosophic Algorithm is Neutrosophicly straightforward.

Figure 6: The Neutrosophic SuperHyperGraphs Associated to the Neutrosophic Notions of Neutrosophic
SuperHyperEulerian-Path-Cut in the Neutrosophic Example (3.20)
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Figure 7: The Neutrosophic SuperHyperGraphs Associated to the Neutrosophic Notions of Neutrosophic
SuperHyperEulerian-Path-Cut in the Neutrosophic Example (3.20)

C(NSHG)
Neutrosophic Eulerian-Path-Cut

= {E
2
, E

3
, E

4
, E

5
}.

C(NSHG)
Neutrosophic Eulerian-Path-Cut SuperHyperPolynomial

= i NSHG
Z

E E

C(NSHG)
Neutrosophic  V-Eulerian-Path-Cut

= {V
i
   V

NSHG
}.

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut SuperHyperPolynomial

= i NSHG
Z

V V

3. The Neutrosophic Departures on the Theoretical Results Toward Theoretical Motivations

The previous Neutrosophic approach apply on the upcoming Neutrosophic results on Neutrosophic SuperHyperClasses.

Proposition 3.1.

Assume a connected Neutrosophic SuperHyperPath ESHP : (V, E).

Then

C(NSHG)
Neutrosophic Eulerian-Path-Cut

= {E
i
   E

NSHG
}.

C(NSHG)
Neutrosophic Eulerian-Path-Cut SuperHyperPolynomial

= i NSHG
Z

E E

C(NSHG)Neutrosophic V-Eulerian-Path-Cut

= {V
i
   V

NSHG
}.

C(NSHG)Neutrosophic V-Eulerian-Path-Cut SuperHyperPolynomial

= i NSHG
Z

V V
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Proof: Let

P :

1 1,EXTERNALV E

2 2,EXTERNALV E

. . . ,

,
NSHG

EXTERNAL
NSHGEV E

P :

1 1, EXTERNALE V

2 2, EXTERNALE V

. . . ,

,
NSHG

EXTERNAL
NSHG EE V

be a longest path taken from a connected Neutrosophic SuperHyperPath ESHP : (V, E). There’s a new way to redefine
as

~EXTERNAL EXTERNAL
i jV V 

 ,! , ,EXTERNAL EXTERNAL
z i j zESHG V EE E V V E   

   ,! , ,EXTERNAL EXTERNAL
z i j zESHG V EE E V V E  

The term “EXTERNAL” implies    EXTERNAL
i jN V N V  where V

j
 is corresponded to EXTERNAL

iV  in the literatures of

SuperHyperEulerian-Path-Cut. The latter is straightforward.

Example 3.2.

In Figure 8, the connected Neutrosophic SuperHyperPath ESHP : (V, E), is highlighted and featured. The Neutrosophic
SuperHyperSet, in the Neutrosophic SuperHyperModel (8), is the SuperHyperEulerian-Path-Cut.

Figure 8: A Neutrosophic SuperHyperPath Associated to the Notions of Neutrosophic SuperHyperEulerian-Path-
Cut in the Example (4.2)
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Proposition 3.3.

Assume a connected Neutrosophic SuperHyperCycle ESHC : (V, E).

Then

C(NSHG)
Neutrosophic Eulerian-Path-Cut

= {}.

C(NSHG)
Neutrosophic Eulerian-Path-Cut SuperHyperPolynomial

= 0z0.

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut

= {}.

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut SuperHyperPolynomial

= 0z0.

Proof: Let

P :

1 1,EXTERNALV E

2 2,EXTERNALV E

. . . ,

,
NSHG

EXTERNAL
NSHGEV E

P :

1 1, EXTERNALE V

2 2, EXTERNALE V

. . . ,

,
NSHG

EXTERNAL
NSHG EE V

be a longest path taken from a connected Neutrosophic SuperHyperCycle ESHC : (V, E). There is a new way to redefine
as

~EXTERNAL EXTERNAL
i jV V 

 ,! , ,EXTERNAL EXTERNAL
z i j zESHG V EE E V V E   

   ,! , ,EXTERNAL EXTERNAL
z i j zESHG V EE E V V E  

The term “EXTERNAL” implies    EXTERNAL
i jN V N V  where V

j
 is corresponded to EXTERNAL

iV  in the literatures of

SuperHyperEulerian-Path-Cut. The latter is straightforward.

Example 3.4.

In Figure 9, the connected Neutrosophic SuperHyperCycle NSHC : (V, E), is highlighted and featured. The obtained
Neutrosophic SuperHyperSet, in the Neutrosophic SuperHyperModel (9), is the Neutrosophic SuperHyperEulerian-
Path-Cut.
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Proposition 3.5.

Assume a connected Neutrosophic SuperHyperStar ESHS : (V, E).

Then

C(NSHG)
Neutrosophic Eulerian-Path-Cut

= {}.

C(NSHG)
Neutrosophic Eulerian-Path-Cut SuperHyperPolynomial

= 0z0.

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut

= {}.

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut SuperHyperPolynomial

= 0z0.

Proof: Let

P :

1 1,EXTERNALV E

CENTER, E
2

P :

1 1, EXTERNALE V

E
2
, CENTER

be a longest path taken a connected Neutrosophic SuperHyperStar ESHS : (V, E). There’s a new way to redefine as

~EXTERNAL EXTERNAL
i jV V 

 ,! , ,EXTERNAL EXTERNAL
z i j zESHG V EE E V V E   

   ,! , ,EXTERNAL EXTERNAL
z i j zESHG V EE E V V E  

Figure 9: A Neutrosophic SuperHyperCycle Associated to the Neutrosophic Notions of Neutrosophic
SuperHyperEulerian-Path-Cut in the Neutrosophic Example (4.4)
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The term “EXTERNAL” implies    EXTERNAL
i jN V N V  where V

j
 is corresponded to EXTERNAL

iV  in the literatures of

SuperHyperEulerian-Path-Cut. The latter is straightforward.

Example 3.6.

In the Figure 10, the connected Neutrosophic SuperHyperStar ESHS : (V, E), is highlighted and featured. The obtained
Neutrosophic SuperHyperSet, by the Algorithm in previous Neutrosophic result, of the Neutrosophic
SuperHyperVertices of the connected Neutrosophic SuperHyperStar ESHS : (V, E), in the Neutrosophic
SuperHyperModel (10), is the Neutrosophic SuperHyperEulerian-Path-Cut.

Proposition 3.7.

Assume a connected Neutrosophic SuperHyperBipartite ESHB : (V, E).

Then

C(NSHG)
Neutrosophic Eulerian-Path-Cut

= {}.

C(NSHG)
Neutrosophic Eulerian-Path-Cut SuperHyperPolynomial

= 0z0.

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut

= {}.

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut SuperHyperPolynomial

= 0z0.

Proof: Let

P :

1 1,EXTERNALV E

2 2,EXTERNALV E

. . .,

Figure 10: A Neutrosophic SuperHyperStar Associated to the Neutrosophic Notions of Neutrosophic
SuperHyperEulerian-Path-Cut in the Neutrosophic Example (4.6)
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min min,
i j NSHG i j NSHG

EXTERNAL
j jP P E P P EV P E P   

P :

1 1, EXTERNALE V

2 2, EXTERNALE V

. . .,

min min,
i j NSHG i j NSHG

EXTERNAL
j jP P E P P EE P V P   

is a longest path taken from a connected Neutrosophic SuperHyperBipartite ESHB : (V, E). There’s a new way to
redefine as

~EXTERNAL EXTERNAL
i jV V 

 ,! , ,EXTERNAL EXTERNAL
z i j zESHG V EE E V V E   

   ,! , ,EXTERNAL EXTERNAL
z i j zESHG V EE E V V E  

The term “EXTERNAL” implies    EXTERNAL
i jN V N V  where V

j
 is corresponded to EXTERNAL

iV  in the literatures of

SuperHyperEulerian-Path-Cut. The latter is straightforward. Then there’s no at least one SuperHyperEulerian-Path-Cut.
Thus the notion of quasi may be up but the SuperHyperNotions based on SuperHyperEulerian-Path-Cut could be
applied. There are only two SuperHyperParts. Thus every SuperHyperPart could have one SuperHyperVertex as the
representative in the

P :

1 1,EXTERNALV E

2 2,EXTERNALV E

is a longest SuperHyperEulerian-Path-Cut taken from a connected Neutrosophic SuperHyperBipartite ESHB : (V, E).
Thus only some SuperHyperVertices and only minimum-Neutrosophic-of-SuperHyperPart SuperHyperEdges are attained
in any solution

P :

1 1,EXTERNALV E

2 2,EXTERNALV E

The latter is straightforward.

Example 3.8.

In the Neutrosophic Figure (11), the connected Neutrosophic SuperHyperBipartite ESHB : (V, E), is Neutrosophic
highlighted and Neutrosophic featured. The obtained Neutrosophic SuperHyperSet, by the Neutrosophic Algorithm in
388 previous Neutrosophic result, of the Neutrosophic SuperHyperVertices of the connected Neutrosophic
SuperHyperBipartite ESHB : (V, E), in the Neutrosophic SuperHyperModel (11), is the Neutrosophic SuperHyperEulerian-
Path-Cut.

Proposition 3.9.

Assume a connected Neutrosophic SuperHyperMultipartite ESHM : (V, E).

Then
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C(NSHG)
Neutrosophic Eulerian-Path-Cut

= {}.

C(NSHG)
Neutrosophic Eulerian-Path-Cut SuperHyperPolynomial

= 0z0.

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut

= {}.

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut SuperHyperPolynomial

= 0z0.

Proof: Let

P :

1 1,EXTERNALV E

2 2,EXTERNALV E

. . .,

min min,
i j NSHG i j NSHG

EXTERNAL
j jP P E P P EV P E P   

P :

1 1, EXTERNALE V

2 2, EXTERNALE V

. . .,

min min,
i j NSHG i j NSHG

EXTERNAL
j jP P E P P EE P V P   

is a longest SuperHyperEulerian-Path-Cut taken from a connected Neutrosophic SuperHyperMultipartite ESHM :
(V, E). There’s a new way to redefine as

Figure 11: Neutrosophic SuperHyperBipartite Neutrosophic Associated to the Neutro- sophic Notions of
Neutrosophic SuperHyperEulerian-Path-Cut in the Example (4.8)
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~EXTERNAL EXTERNAL
i jV V 

 ,! , ,EXTERNAL EXTERNAL
z i j zESHG V EE E V V E   

   ,! , ,EXTERNAL EXTERNAL
z i j zESHG V EE E V V E  

The term “EXTERNAL” implies    EXTERNAL
i jN V N V  where V

j
 is corresponded to EXTERNAL

iV  in the literatures of

SuperHyperEulerian-Path-Cut. The latter is straightforward. Then there’s no at least one SuperHyperEulerian-Path-Cut.
Thus the notion of quasi may be up but the SuperHyperNotions based on SuperHyperEulerian-Path-Cut could be
applied. There are only z2 SuperHyperParts. Thus every SuperHyperPart could have one SuperHyperVertex as the
representative in the

P :

1 1,EXTERNALV E

2 2,EXTERNALV E

is a longest path taken from a connected Neutrosophic SuperHyperMultipartite ESHM : (V, E). Thus only some
SuperHyperVertices and only minimum-Neutrosophic-of-SuperHyperPart SuperHyperEdges are attained in any solution

P :

1 1,EXTERNALV E

2 2,EXTERNALV E

is a longest path taken from a connected Neutrosophic SuperHyperMultipartite ESHM : (V, E). The latter is straightforward.

Example 3.10.

In Figure 12, the connected Neutrosophic SuperHyperMultipartite ESHM : (V, E), is highlighted and Neutrosophic
featured. The obtained Neutrosophic SuperHyperSet, by the Algorithm in previous Neutrosophic result, of the
Neutrosophic SuperHyperVertices of the connected Neutrosophic SuperHyperMultipartite ESHM : (V, E), in the
Neutrosophic SuperHyperModel (12), is the Neutrosophic SuperHyperEulerian-Path-Cut.

Figure 12: A Neutrosophic SuperHyperMultipartite Associated to the Notions of Neutrosophic
SuperHyperEulerian-Path-Cut in the Example (4.10)
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Proposition 3.11.

Assume a connected Neutrosophic SuperHyperWheel ESHW : (V, E).

Then

C(NSHG)
Neutrosophic Eulerian-Path-Cut

= {}.

C(NSHG)
Neutrosophic Eulerian-Path-Cut SuperHyperPolynomial

= 0z0.

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut

= {}.

C(NSHG)
Neutrosophic V-Eulerian-Path-Cut SuperHyperPolynomial

= 0z0.

Proof: Let

P :

*
1 1,EXTERNALV E

*
2,CENTER E

P :

*
1 1, EXTERNALE V

*
2 ,E CENTER

is a longest SuperHyperEulerian-Path-Cut taken from a connected Neutrosophic SuperHyperWheel ESHW : (V, E).
There’s a new way to redefine as

Figure 13: A Neutrosophic SuperHyperWheel Neutrosophic Associated to the Neu- trosophic Notions of
Neutrosophic SuperHyperEulerian-Path-Cut in the Neutrosophic Example (4.12)
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~EXTERNAL EXTERNAL
i jV V 

 ,! , ,EXTERNAL EXTERNAL
z i j zESHG V EE E V V E   

   ,! , ,EXTERNAL EXTERNAL
z i j zESHG V EE E V V E  

The term “EXTERNAL” implies    EXTERNAL
i jN V N V  where V

j
 is corresponded to EXTERNAL

iV  in the literatures of

SuperHyperEulerian-Path-Cut. The latter is straightforward. Then there’s at least one SuperHyperEulerian-Path-Cut.
Thus the notion of quasi isn’t up and the SuperHyperNotions based on SuperHyperEulerian-Path-Cut could be applied.
The unique embedded SuperHyperEulerian-Path-Cut proposes some longest SuperHyperEulerian-Path-Cut excerpt
from some representatives. The latter is straightforward.

Example 3.12.

In the Neutrosophic Figure 13, the connected Neutrosophic SuperHyperWheel NSHW : (V, E), is Neutrosophic highlighted
and featured. The obtained Neutrosophic SuperHyperSet, by the Algorithm in previous result, of the Neutrosophic
SuperHyperVertices of the connected Neutrosophic SuperHyperWheel ESHW : (V, E), in the Neutrosophic
SuperHyperModel (13), is the Neutrosophic SuperHyperEulerian-Path-Cut.
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