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Abstract

We study the existence, uniqueness and stability solutions of new Volterra integro-
differential equations of the first order by using Picard approximation method, Banach
fixed point theorem. Theorems on the existence, uniqueness and stability solutions are
established under some necessary and sufficient conditions on closed and bounded domains.
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Introduction

Integro-differential equations of various type and kinds play an important role in many branches of mathematics and
engineering field. Analytical solution of this kind of equation is not accessible in general form of equation and we can
get an exact solution only in special cases. But in industrial problems we have not spatial cases so that we try to solve
this kind of equations numerically in general format. Many numerical schemes are employed to give an approximate
solution with sufficient accuracy (Tricomi, 1965; Rama, 1981; Burton, 2005; Palais., 2007; and Mahdi Monje and Ahmed,
2019). Many authors create and develop successive approximation method and Banach fixed point theorem (Struble,1962;
Andrzej and James, 2003; Beeker and Burton,2006; Battelli and Feckan., 2008; Butris and Rafeq, 2011; Abdullah, 2015;
Manouchehr et al., 2018; and Pakhshan et al., 2019) and schemes to investigate the solution of integral equations
describing many applications in mathematical and engineering field.

Definition 1: A function f is defined on a set E < R is said to be continuous at point x in E if € > 0 is given, there is
a a positive number &, such that for all y in E with 1x —¥1 <& we have If(x) - ()| <e.

Definition 2: A continuous function f satisfy a Lipchitz condition on the domain ¢ = {(t,x):a <t < b,c < x <d}in
the variable x on G if for all K> 0 and (¢, x;), (t, x,) € G, such that:
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If (t.x1) — f(t, x| < Klxg — x5]

Definition 3: Let {f; (t)}2, be a sequence of functions defined on a set E < R. We say that {f;(t)}i=o converges
uniformly to the limit function fon E if € > O is given, there exist a positive integer N such that:

If;(®) — f(t)| <eforalli > N,t €E.
Definition 4: Asolution x(t) is said to be stable if for each € > O there exist a § > 0 such that any solution (t) which
satisfies [|[X(to) — x(to) |l < & for some t, also satisfies [|X(t) — x(t)|| < eforallt > t;
Definition 5: Let E be a vector space of a real-valued function ||. || of E into R called a norm if satisfies:

Lx|| = oforall x €E

2. ||x|l = 0 ifand onlyifx =0

3.llx +yll < llx|l + |lyllforall x,y € E

4. |lax|| = |a||lx|| forall x € E and @ € R
Definition 6: Alinear space E with a norm defined on it is called a normed space.

Definition 7: A normed linear space E is called complete if for every Cauchy sequence in E convergent to an
elementin E.

Definition 8: A complete normed linear space is a Banach space.
Definition 9: If T"map E into itself and v is a point of E such that T = v, then v isa fixed pointof T".
Definition 10: Let (E, ||. ||) be anorm space. If T “map into itself we say that T " is a contraction mapping on E if there
exists a € R with 0 < <1 such that:
IT"x =Tyl < allx =yl \x,y €E

Theorem 1 (Banach Fixed Point Theorem): Let (E, ||. ||) be complete metric space with a contraction mapping T™: E — E.
Then T aunique fixed-point x in E (i.e. T, “x=x). (For the definitions and theorem see (Butris and Hasso, 2000; Butris
and Aziz, 2006; and Butris and Rafeq, 2011).

In this paper, we prove the existence, uniqueness and stability solution of Volterra integro-differential equations of
the first order by using both method of Picard approximation and Banach fixed point theorem which are given in
(Struble, 1962; and Rama, 1981).

Consider the following integro-differential equations of the first order:

% =Ax+f (t,x,y, J‘_;R(t - s)x(s)ds)\

d t
d_}t/ =By+g (t, Xy, J‘_wH(t - s)y(s)ds>)I (1)

Let the vector functions f(t, X, y, z) and g(t, X, y, v) be defined and continuous on the domains:

(t,x,y,z)eR1><D><D1><DZ}

(t,x,y,v) ER' x D x D; x D, (2

where D, D, are closed and bounded domains subsets of Euclidean space R"and D,, D, are bounded domains subset of
the Euclidean space R™

Suppose that the vector functionsand f(t, x, y, z) and g(t, X, y, v) satisfy the following inequalities:
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If (e xy 2l < M}

lg(t,x,y,v)I| <N (3
lf(t, %1, y1,21) — f(t, %2, 2, 22)l

< Killxg — x|l + Kollys — yoll + Ksllze — 2ol -4
lg(t, x1,¥1,v1) — g(t x2, 2, )l

< Lyllxg — xoll + Lallys — yall + Lallvy — val| .(5)

forall ¢t € Rl, X, X1, X2 € D,y, V1. Y2 € Dl, Z,Z1,Zy € Dzand V,V1,Vy € D‘U'
where M, N, K, K, K, L, L,, and L, are positive constants.

Suppose that A = [Aij] andB = [Bij] are (x n) positive matrices which are continuous in t, and satisfy the following
inequalities:

”eA(t—s) ” < 66—/1(1'—5)

...(6)
[l < ge75¢=) -
—A(t—s)
IR(E =)l < G- s= -(8)
e~ &(t—s)
IH( =)l < dm -9)
where0<a, f<land§, 4, & X, c,d are positive constants.
We define the non-empty sets as follows:
D;=D - §(1 —e )M
A
D, =D; — % A-e )N -(10)
Furthermore, we suppose that the largest eigen-value of the matrix
A= (2 gj) does not exceed unity
o (y = BB (E1+E4;2 — 4(Ey Ea — BoF3) _ a
where
1) cT* 1 1)
E, = Z(l —e ) (K, + K3 T) Ep = Z(l —e K,
Bam S e Ly, By = E e+ 1D
We define the sequence of functions {x,, (t), ¥, (t)}r—o on the domains (2) by the following:
t N
O R i A CENORMON I L PROTE ®

X,(0)=x, forallm=0,1,2, ...



Raad N. Butris and Sahla B. Abdi / Int. J. Pure & App. Math. Res. 1(1) (2021) 21-3 3 Page 24 of 33

and

Ier(® =0+ [ XG55 () | HE = 2y ()delas

0 .(13)
y,(0) =y, forallm=0,1,2, ...
2. Existence Solution of (1)

In this section, we prove the existence theorem of integro-differential equation (1) by using Picard approximation
method.

Theorem 2 (Existence Theorem): Let the vector functionsf(t, x, y, z) and g(t, x, y, v) are defined and continuous on the
domain (2) satisfy the inequalities from (3) to (9) and condition (10). Then there exist the sequence of functions (12) and
(13) convergent uniformly on the domain:

(t, XO) € Rl X Df }

(t.yo) € R* x D, .(14)
. . x(t) . . - .
to the limit functions ( t)) which satisfy the following integral equations:
t N
x(t) = xg + f eA(t‘S)[f(s,x(s),y(s),f R(s — t)x(r)dr]ds 15)
0 —o0
and
t N
Y@ = yo+ [ e INg(s.2(). (), [ Hs = Dyarlas s
0 —0
And it’s a unique solution of (1), provided that
g A—-e*T)M
(nxm(t) - xon) (7
1y (8) = yoll) =\ £ (1 — e2T)N .(17)
and
ll2c(t) — xm, (t)II) -1
<A"(E—-A)"Q
() — o) A" E =D, 18)
Proof: Putm=0in (12), we get
t N
ba® = xoll < [ 1l £ 53030, [ RG = Dwodlllds
0 —00
5 _
< 1(1 —e )M, forall t € [0,T]
And hence
I (6) = %ol < 21— ey

Therefore, x;(¢) € Dforall t € [0,T] and x, € Dy.

Also, from (13) when m =0, we have
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t N
() — yoll < f 1P 5. %0, Yo f H(s — 0)yodr]llds
0] —00

&
St e XN forall t € [0,T]

Therefore,

&
172(8) = yoll < 5 (1 = 3N

-(20)
Therefore y1(t) € Dy forall t € R, y, € D,

Then by mathematical induction, we can prove that:

I (8) = ol <5 (1 = &)

1m () = Yoll < 5 (1= e MIN (2D

Therefore x,,, (t) € D, y,, (t) € D1, t € [0,T], %o € Dy, ¥p € Dgym =12, ...
By rewriting the inequality (21) by the vector form, then we have (17).
Next, we shall prove that the sequence of functions (12) and (13) convergent uniformly on the domain (2).

When m=1in(12) and (13), we have

[[2o () — x1 ()]l
<1l [ AINfGme ). [ R -Dm@dds
0 —00

_J‘ eA(t—s)[f(S’xO’yO’J‘s R(S — T)deT]dS ”
0

—00

t
< [ A Kl s) = soll+ Kollsa () = ol
0

+ K5 [ IRG =Dl (@ - xolldrdds

a-1

¢ ct
< f leA¢=9||[Kyllx1 (s) — xoll + Kally1(s) — yoll + K3 [|2x1 (s)
0

21

— Xpllds

a-1

6
<2 (1= e (K + K S ) = xoll + Kol ) = yoll

22

Thus,

llx2(t) — 21 (DI < E1 (D)11x2(¢) — xoll + E2(0) 1 () — ol

By the same way above, we get
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ly2(t) =y @)l

t
= f le®¢= Ly llxs(s) = xoll + Lallyr (s) = yol
0

+ s | IHG =Dl - yolldrlds

t d tﬂ—l
< J. ||eB(t_s)||[L1||x1(S) = xoll + Lally1(s) — yoll + L ox lly1(s)
0
— Yollds
€ dtf-1
—Xt
< Z(l — e ) [Lyllxy (£) — xoll + (Lp + L ox My (t) — ¥oll]

Therefore,

ly2(t) =y (Ol < Es(©)llx1.(t) — xoll + Eo()lly1(t) — woll

Then by the mathematical induction, we can obtain that

1% 41 (8) = X (O] < E1 (©) 1120 (€) = X1 (O || + E2(O) |93 () = Y1 (O

Similarly,

1Ym+1(8) = Y (Ol < Eg(©) 1%, (¢) = X1 ()] + E4 ()Y () = Y- ()l

Rewriting inequalities (22) and (23) by vector form, we have
Qm+1(t) < A(t)'Qm

(”xm+l(t) - xm(t)”>

0 =
mt ”ym+l(t) _ym(t)”

0 - <||xm<t> —xm_1<t>n>
"7\ (® = 3 O

and

_(E@) E(®
"‘0—(1%«) Ei(t))

Now, we take the maximal value for the both sides of the inequality (24) we have

Qm+l < A'Qm
where A = max_A(t), we obtain
t€[0,T]
_(E1 E
r=(e )
By repetition (25), we find that

Q1 S A"y

%(l —e TYyM

where Q; = 5(1 ey
X e

Page 26 of 33

(22)

(23)

.(24)

.(25)

.(26)



Raad N. Butris and Sahla B. Abdi / Int. J. Pure & App. Math. Res. 1(1) (2021) 21-33 Page 27 of 33

Thus,
m m
Z Q< Z AT,
=l = -27)

By using (11), then the sequence (27) is uniformly convergent that is

,,'lifl) 2. AT, = ;Ai—lnl =(E-MN"1Q 9
Let

(X (£)Y _ (x(D)
fim () = () (29

Since the sequence of functions (12) and (13) are define and continuous in the domain (2) then the limiting vector
function

(x(t)) is also defined and continuous on the same domain, hence the vector function (x(t)) is a solution of (1)

y(t) y(t)
Theorem 3 (Uniqueness Theorem): With the hypotheses and all conditions and inequalities of the theorem 2, then the

x(t)
y(t)

solutions ( ) is a unique on the domain (2).

Proof: Let (x*(t)) be another solution of (1).
y (1)

where
x*(t) = xo +f eAC= £ (s, x*(s),y*(s),f R(s — 7)x* (1) dr)ds] )
0 —o0
and
Y () =y +f0 eE(t‘S)[g(s,x*(S),y*(S),LQH(S — 7)y*(z) dr)ds] a)
Now,
[l (£) — x* ()l
< f [|eA@=|| [Klllx(S) — x* () + K lly(s) = y* ()l
0
a—1
+Ks— llx(s) — x*(S)II] ds
Therefore,
[l (£) — x* ()l
< %(1

CTa—l

T 4
e ") | (K1 + K3 o7

Mx (@) = x* (O + Ko lly(e) = y* ()]
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Hence,
lx(t) — x* (O < Exllx(t) — x* (@)l + Ezlly () — y* (@Il
And also,
ly(t) =y (Ol
< f [|eB¢=9|| [Llllx(s) — x* () + Lally(s) — y* ()|
0 o
+ Ly~ lIy(s) = y*(s)n] ds
Therefore
ly(t) =y @Il
I3
< X 1
drt-1
—e™) [Llnx(t) =" Ol + (L2 + La— DIy =y @l
So,

ly(®) —y* (@)l < Ezllx(t) — x* (Ol + E4lly(e) — y* (Ol
Rewrite the inequalities (32) and (33) by the vector form:

lx(t) — x* (O] lx(t) — x* (O
<||y(t) = y*(t)n) =A (ny(t) = y*(t)n)

Then by the condition (11) we get
(le(t) - x*(t)ll) < (le(t) —x" (0|

) we get contradiction,

ly(t) =y @Il ly(t) =y @Il
then
[lx(£) = x* (@)l 0
(ny(t) - y*(t)n) - (o)
Therefore,

()=o)

and hence the solutions (

x(t)
y(t)

) is a unique solution of (1).

Finally, we shall prove that the solution (x(t)) € ( b ) on the domain (2).
y(t) Dy

Assuming

Aq(8) =

J-teA(t—s)[f(S’ X, (S),ym (S), J-S R(S _ T)xm (‘[)d‘[]ds
0 —

- J-teA(t‘S)[f(s,x(s),y(s), J-S R(s — t)x(t)dr]ds
0 —00
< Ep |l (8) — x (O] + Ex [y (£) — y (DI

Page 28 of 33

.(32)

.(33)

.(34)

.(35)
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and

Ay(t) =

J-teB(t—s)[f(S’ X, (S),ym (S), fs H(S _ T)xm (‘[)d‘[]ds
0 —

- fteB(t‘s)[f(s,x(s),y(s), fs H(s — t)x(r)dr]ds
0 —00
< Eg lxy, (8) — x @) + E4 Iy (£) — y Ol

..(36)

Rewrite the inequalities (35) and (36) in a vector form, we have

A,(6) lx (©) = x (D)
(o)) = (nym (t)—y(t)ll>

But the sequence of functions (12) and (13) convergent uniformly on the domain (2), therefore||x,,, (t) — x (t)|| <€;
and ||y, (€) —y (O <€
€1,€, 20

That is
(o) =7 ()

By condition (11), we get the solution (x(t)) € ( b )on the domain (2)
y(t) Dy

3. Stability Solution of (1)
In this section, we study the stability solution of the problem (1) by the following theorem:

x(t)

_ which are another solutions of (1
y(t)) @

Theorem 4 (Stability Theorem): If the inequalities (3) to (9) are satisfied and (

then the solutions is stable for all t > 0.

where

X(t) = %o + LteA(f‘S)[f(s,i(s),?(S), f;R(S — 1)%(7) dr)ds] -(37)
and

§(&) = 7o + fo B g(s,2(s), ¥(s), f_ (s =7)y(@) dr)ds] (38)

Proof: Taking

llx () — x(O)l

xpelt + J.teA(t—S)[f(s,x(S),y(S), J.S R(s — 1)x(7) dr)ds]
0 —0

— Xpelt — J-teA(t‘S)[f(s,J?(s),j/(s),fs R(s — 1)%(z) dr)ds]
0 —00

< llxo — Xoll + fo (|| [Kyl1x(s) = £(S)II + K2lly(s) = 7()I
a-1

21

+ K3

llx(s) — x(s)Il1ds
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Therefore

llx(£) — (Ol
cT

<o = oll + [ e 0+
+ K> |ly(s) — y(s)lllds
So
llx(@®) — 2Ol < llxo — Xoll + Exllx(t) — ()|l + Ex|ly(t) — y(©)l
And according to the definition of stability for ||xg — %ol < 8; we get:

lx(t) — X ()|l < 61 + Eq|lx(¢) — x(O) + E2lly(¢) — y ()l
Also

ly (&) =y (D)l

— 5o - fo eI (5,736, [ HGs — D3 de)ds]

< Ilyo - Foll + fo lePE2| [Lallx(s) — Z()I + Llly(s) — 7(s)Il

B—1
+ Ly ——Ily(s) = 9(s)Il1ds
Hence
ly(t) — y (@)l
< llyo — ¥oll "‘J;) [leB¢=|[Ly x(£) — 2 (Ol + (L2
Th-1
+ Ls—)lly(®) = 3(O)lllds
Thus

ly(@) — y(OIl < llyo — Foll + Esllx(t) — (@)l + E4lly(t) — y(OIl
Also by the definition of stability for ||yg — y5 | < &, we get:

ly (&) =yl < 82 + Esllx(t) — x| + Eally(6) — y(O)|

From the inequalities (37) and (38) we have:

(v —5com = () (2 £) (15 e

By the condition (11) and the definition of stability, we obtain that

(t) — x(¢t)
(”;(i) —;(i)”) = (2) 61,6, >0

3

a-1
o7 Ix(s) — x|

Yo + fo P g (s, x(s), y(s), f H(s — 7)y(2) dr)ds]

Page 30 of 33

.(39)

...(40)



Raad N. Butris and Sahla B. Abdi / Int. J. Pure & App. Math. Res. 1(1) (2021) 21-33 Page 31 of 33

So, that the solution of (1) is stable for all ¢t € [0, T].

4. Existence and Uniqueness Solution of (1)
In this section, we prove the existence uniqueness theorem of the problem (1) by using Banach fixed point theorem.

Theorem 5 (Existence and Uniqueness Theorem): Let the vector functionsf (t, X, y, z) and g (t, X, y, V) in the problem are
defined and continuous on the domain and satisfy all conditions of theorem 2, then the problem has a unique continuous
solution on the domain.

Proof: Let (C[O,T],||.||) be Banach space and T be a mapping on C[0, T] as follows:

T*x(t) = xo + fteA(t‘s)[f(s,x(s),y(s), fs R(s — 1)x(7)dr]ds
0 —00

..(41)
and
t 5( ) N

* — t—s —_
Ty =30+ [ gl x( ), | HGs -y (@arlds @
Since f(t,x,y,z)and g (t, X, y, v) are continuous in the interval [0, T] and x, y, are fixed points then

t N
f eA(t‘S)[f(s,x(S),y(S),f R(s — t)x(z)dr]ds

0 —00

and

t N
[ g, 15y, | HGs — ydrlas

0 —00
Are continuous functions on C[0, T]
Therefore, T*x(t), T*y(t) € C[0,T]
Let x(t), x*(t), y(t),y*(t) € C[O,T] then
IT*x(t) = T*x" ()l

t
< maxt | e IKale(®) ~ 2 @)+ Kelly(©) =y O
a-1
+ Ky~ llx(s) = x*(s)IN)dis

Therefore
IT"x(t) = T*x* (Ol < Exllx(¢) — x" (Ol + Exlly(t) — y* @Ol (@3

And by the similar way, we get
ITy() — Ty @)l

t

< max [f leZ¢=9| [Lyllx(s) — x* () + Lally(s) — y* ()
t€[0,T] 0
p-1

2X

+ Ly

ly(s) —y*(s)ll]lds

Hence

IT*y(t) = T*y" ()|l < Esllx(t) — x" ()l + Eglly(t) — y* (0)] (44)
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Rewrite the inequalities (43) and (44) in a vector form:
(IIT*x(t) - T*x*(t)ll) < (El Ez) (le(t) - x*(t)ll>
Ty (@) =Ty (OI) = \Es  Eq) \|ly(&) = y* (Il
By the condition (11), then T* is a contraction mapping on C[0, T].

Therefore,

T*x(t) = x(t) = xo + J-te“‘(t‘s)[f(s,x(s),y(s),fS R(s — 1) x(t)dr]ds
0 —

and

T"y() =y(t) =y, + fo e? I g(s,x(s), ¥(s), f_ S H(s — 1)y(z) drlds

and hence (x(t)) is a unique solution of (1).

y(t)

Conclusion

This paper provided the existence, uniqueness and stability solutions of new integro-differential equations of the first
order by using both method Picard approximation and Banach fixed point theorem. Theorems on the existence, uniqueness
and stability solutions are established under some necessary and sufficient conditions on compact spaces.

Remark: The Picard approximation method given global solution but Banach fixed point theorem give us the local
solution of integro-differential equations of the first order (1).
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